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P R E F A C E T O T H I R D E D I T I O N . 

In preparing the third edition of Engineering Mathematics, 
besides revision and correction of the previous text, considera
ble new mat ter has been added. 

The chain fraction has been recogni*d and discussed as a 
convenient method of numerical representation and approxi
mation; a paragraph has beeil devoted to thè diophantic equa
tions, and a section added on engineering reports, discussing 
the different purposes for which engineering reports are made, 
and the corresponding character and nature of the report, in 
its bearing on the success and recognition of the engineer's 
work. 

CHARLES PROTEUS STEINMETZ. 
C A M P M O H A W K , 

September 1st, 1 9 1 7 . 



P R E F A C E T O F I R S T E D I T I O N . 

T H E following work embodies the subject-matter of a lecture 
course which I have given to the junior and senior electrical 
engineering students of Union University for a number of 
years. 

I t is generally conceded that a fair knowledge of mathe
matics is necessary to the engineer, and especially the electrical 
engineer. For the latter, however, some branches of mathe
matics are of fundamental importance, as the algebra of the 
general number, the exponential and trigonometric series, etc., 
which are seldom adequately treated, and often not taught a t 
all in the usual text-books of mathematics, or in the college 
course of analytic geometry and calculus given to the engineer
ing students, and, therefore, electrical engineers often possess 
little knowledge of these subjects. As the result, an electrical 
engineer, even if he possess a fair knowledge of mathematics, 
may often find difficulty in dealing with problems, through lack 
of familiarity with these branches of mathematics, which have 
become of importance in electrical engineering, and may also 
find difficulty in looking up information on these subjects. 

In the same way the college student, when beginning the 
study of electrical engineering theory, after completing his 
general course of mathematics, frequently finds himself sadly 
deficient in the knowledge of mathematical subjects, of which 
a complete familiarity is required for effective understanding 
of electrical engineering theory. I t was this experience which 
led me some years ago to start the course of lectures which 
is reproduced in the following pages. I have thus at tempted to 
bring together and discuss explicitly, with numerous practical 
applications, all those branches of mathematics which are of 
special importance to the electrical engineer. Added thereto 

vii 
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are a number of subjects which experience has shown me 
to be important for the effective and expeditious execution of 
electrical engineering calculations. Mere theoretical knowledge 
of mathematics is not sufficient for the engineer, but it must 
be accompanied by ability to apply it and derive results—to 
carry out numerical calculations. I t is not sufficient to know 
how a phenomenon occurs, and how it may be calculated, but 
very often there is a wide gap between this knowledge and the 
ability to carry out the calculation; indeed, frequently an 
a t t empt to apply the theoretical knowledge to derive numerical 
results leads, even in simple problems, t o apparently hopeless 
complication and almost endless calculation, so tha t all hope 
of getting reliable results vanishes. Thus considerable space 
has been devoted to the discussion of methods of calculation, 
the use of curves and their evaluation, and other kindred 
subjects requisite for effective engineering work. 

Thus the following work is not intended as a complete 
course in mathematics, but as supplementary to the general 
college course of mathematics, or to the general knowledge of 
mathematics which every engineer and really every educated 
man should possess. 

In illustrating the mathematical discussion, practical 
examples, usually taken from the field of electrical engineer
ing, have been given and discussed. These are sufficiently 
numerous tha t any example dealing with a phenomenon 
with which the reader is not yet familiar may be omitted and 
taken up a t a later t ime. 

As appendix is given a descriptive outline of the intro
duction to the theory of functions, since the electrical engineer 
should be familiar with the general relations between the 
different functions which he meets. 

In relation to " Theoretical Elements of Electrical Engineer
ing," " Theory and Calculation of Alternating Current Phe
nomena," and " Theory and Calculation of Transient Electric 
Phenomena," the following work is intended as an introduction 
and explanation of the mathematical side, and the most efficient 
method of s tudy, appears to me, to s tar t with " Electrical 
Engineering Mathemat ics ," and after entering its third 
chapter, to t ake up the reading of the first section of " Theo
retical Elements ," and then parallel the s tudy of " Electrical 
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Engineering Mathematics," " Theoretical Elements of Electrical 
Engineering," and " Theory and Calculation of Alternating 
Current Phenomena," together with selected chapters from 
" Theory and Calculation of Transient Electric Phenomena," 
and after this, once more systematically go through all four 
books. 

CHARLES P. STEINMETZ. 
SCHENECTADY, N . Y., 

December, 1910. 

P R E F A C E T O S E C O N D E D I T I O N . 

I N preparing the second edition of Engineering Mathe
matics, besides revision and correction of the previous text, 
considerable new mat ter has been added, more particularly 
with regard to periodic curves. In the former edition the 
s tudy of the wave shapes produced by various harmonics, 
and the recognition of the harmonics from the wave shape, 
have not been treated, since a short discussion of wave shapes 
is given in "Alternating Current Phenomena." Since, how
ever, the periodic functions are the most important in elec
trical engineering, it appears necessary to consider their shape 
more extensively, and this has been done in the new edition. 

The symbolism of the general number, as applied to alter
nat ing waves, has been changed in conformity to the decision 
of the International Electrical Congress of Turin, a discussion 
of the logarithmic and semi-logarithmic scale of curve plot
ting given, etc. 

CHARLES P . STEINMETZ. 
December, 1914. 
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ENGINEERING MATHEMATICS. 

CHAPTER I. 

THE GENERAL NUMBER. 

A. THE SYSTEM OF NUMBERS. 

Addition and Subtraction. 

I. From the operation of counting and measuring arose the 
ar t of figuring, arithmetic, algebra, and finally, more or less, 
the entire structure of mathematics. 

During the development of the human race throughout the 
ages, which is repeated by every child during the first years 
of life, the first conceptions of numerical values were vague 
and crude: many and few, big and little, large and small. 
Later the ability to count, tha t is, the knowledge of numbers, 
developed, and last of all the ability of measuring, and even 
up to-day, measuring is to a considerable extent done by count
ing: steps, knots, etc. 

From counting arose the simplest arithmetical operation— 
addition. Thus we may count a bunch of horses: 

1, 2, 3, 4, 5, 

and then count a second bunch of horses, 

1, 2, 3 ; 

now put the second bunch together with the first one, into one 
bunch, and count them. That is, after counting the horses 
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of the first bunch, we continue to count those of the second 
bunch, thus : 

1, 2, 3, 4, 5 , - 6 , 7, 8; 

which gives addition, 
5 + 3 = 8; 

or, in general, 
a + b=c. 

We may take away again the second bunch of horses, tha t 
means, we count the entire bunch of horses, and then count 
off those we take away thus : 

1, 2, 3, 4, 5, 6, 7, 8 - 7 , 6, 5 ; 

which gives subtraction, 
8 - 3 - 5 ; 

or, in general, 
c—b = a. 

The reverse of put t ing a group of things together with 
another group is to take a group away, therefore subtraction 
is the reverse of addition. 

2. Immediately we notice an essential difference between 
addition and subtraction, which may be illustrated by the 
following examples : 

Addition : 5 horses + 3 horses gives 8 horses, 
Subtraction: 5 horses —3 horses gives 2 horses, 
Addition: 5 horses+7 horses gives 12 horses, 
Subtraction: 5 horses — 7 horses is impossible. 

From the above it follows tha t we can always add, but we 
cannot always subtract ; subtraction is not always possible; 
it is not, when the number of things which we desire to sub
tract is greater than the number of things from which we 
desire to subtract . 

The same relation obtains in measuring; we may measure 
a distance from a start ing point A (Fig. 1), for instance in steps, 
and then measure a second distance, and get the total distance 
from the start ing point by addi t ion: 5 steps, from A to B. 
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then 3 steps, from B to C, gives the distance from A to C, as 
8 steps. 

5 s t e p s + 3 steps = 8 steps; 

>- 1-

^ 1 2 3 4 5 6 7 8 
( t i i 1 1 a i 1 m 
A B c 

Fro. 1. Addition. 

or, we may step off a distance, and then step back, tha t is, 
subtract another distance, for instance (Fig. 2), 

5 steps—3 steps = 2 steps; 

tha t is, going 5 steps, from A to B, and then 3 steps back, 
from B to C, brings us to C, 2 steps away from A. 

C B 
FIG. 2. Subtraction. 

Trying the case of subtraction which was impossible, in the 
example with the horses, 5 s t e p s - 7 steps = ? We go from the 
start ing point, A, 5 steps, to B, and then step back 7 steps; 
here we find that sometimes we can do it, sometimes we cannot 
do it ; if back of the starting point A is a stone wall, we cannot 
step back 7 steps. If A is a chalk mark in the road, we may 
step back beyond it, and come to C in Fig. 3. In the latter case, 

2 i 0 1 2 3 4 5 
$ 1 4 )—Í 1 1 1 9 
C A B 

f FIG. 3. Subtraction. Negati\e Result. 

at C we are again 2 steps distant from the start ing point, just 
as in Fig. 2. That is, 

5 - 3 = 2 (Fig. 2), 

5 - 7 = 2 (Fig. 3). 

In the case where we can subtract 7 from 5, we get the same 
distance from the start ing point as when we subtract 3 from 5, 
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but the distance AC in Fig. 3, while the same, 2 steps, as 
in Fig. 2, is different in character, the one is toward the left, 
the other toward the right. That means, we have two kinds 
of distance units, those to the right and those to the left, and 
have to find some way to distinguish them. The distance 2 
in Fig. 3 is toward the left of the start ing point A, that is, 
in tha t direction, in which we step when subtracting, and 
it thus appears natural to distinguish it from the distance 
2 in Fig. 2, by calling the former—2, while we call the distance 
AC in Fig. 2: + 2 , since it is in the direction from A, in which 
we step in adding. 

This leads to a subdivision of the system of absolute numbers, 

1, 2, 3, . . . 

into two classes, positive numbers, 

+ 1, + 2 , + 3 , 

and negative numbers, 

- 1 , - 2 , - 3 , 

and by the introduction of negative numbers, we can always 
carry out the mathematical operation of subtraction: 

c-b = a, 

and, if b is greater than c, a merely becomes a negative number. 
3. We must therefore realize tha t the negative number and 

the negative unit, — 1 , is a mathematical fiction, and not in 
universal agreement with experience, as the absolute number 
found in the operation of counting, and the negative number 
does not always represent an existing condition in practical 
experience. 

In the application of numbers to the phenomena of nature , 
we sometimes find conditions where we can give the negative 
number a physical meaning, expressing a relation as the 
reverse to the positive number; in other cases we cannot do 
this. For instance, 5 horses—7 horses = —2 horses has no 
physical meaning. There exist no negative horses, and at the 
best we could only express the relation by saying, 5 horses —7 
horses is impossible, 2 horses are missing. 
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In the same way, an illumination of 5 foot-candles, lowered 
by 3 foot-candles, gives an illumination of 2 foot-candles, thus, 

5 foot-candles—3 foot-candles = 2 foot-candles. 

If it is tried to lower the illumination of 5 foot-candles by 7 
foot-candles, it will be found impossible; there cannot be a 
negative illumination of 2 foot-candles; the limit is zero illumina
tion, or darkness. 

From a string of 5 feet length, we can cut off 3 feet, leaving 
2 feet, but we cannot cut off 7 feet, leaving —2 feet of string. 

In these instances, the negative number is meaningless, 
a mere imaginary mathematical fiction. 

If the temperature is 5 deg. cent, above freezing, and falls 
3 deg., it will be 2 deg. cent, above freezing. If it falls 7 deg. 
it will be 2 deg. cent, below freezing. The one case is just as 
real physically, as the other, and in this instance we may 
express the relation thus : 

+ 5 deg. cent. —3 deg. cen t .= + 2 deg. cent., 

+ 5 deg. ecm. —7 def. cent. = —2 deg. cent.; 

t ha t is, in temperature measurements by the conventional 
temperature scale, the negative numbers have just as much 
physical existence as the positive number:. 

The same is the case with time, we may represent future 
time, from the present as starting point, by positive numbers, 
and past time then will be represented by negative numbers. 
But we may equally well represent past time by positive num
bers, and future times then appear as negative numbers. In 
this, and most other physical applications, the negative number 
thus appears equivalent with the positive number, and inter
changeable: we may choose any direction as positive, and 
the reverse direction then is negative. Mathematically, how
ever, a difference exists between the positive and the negative 
number; the positive unit, multiplied by itself, remains a pos
itive unit, but the negative unit, multiplied with itself, does 
not remain a negative unit, but becomes positive: 

( + i ) x ( + l ) = ( + D ; 

( - 1 ) X ( - 1 ) = ( + 1), and not = ( - 1 ) . 
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Starting from 5 deg. northern lati tude and going 7 deg. 
south, brings us to 2 deg. southern latitude, which may be 
expresses thus, 

+ 5 deg. latitude—7 deg. latitude = —2 deg. latitude. 

Therefore, in all cases, where there are two opposite direc
tions, right and left on a line, nor th and south latitude, east 
and west longitude, future and past, assets and liabilities, etc., 
there may be application of the negative number; in other cases, 
where there is only one kind or direction, counting horses, 
measuring illumination, etc., there is no physical meaning 
which would be represented by a negative number. There 
are still other cases, where a meaning may sometimes be found 
and sometimes not ; for instance, if we have 5 dollars in our 
pocket, we cannot take away 7 dollars; if we have 5 dollars 
in the bank, we may be able t o draw out 7 dollars, or we may 
not, depending on our credit. In the first case, 5 dollars —7 
dollars is an impossibility, while the second case 5 dollars —7 
dollars = 2 dollars overdraft. 

In any case, however, we must realize tha t the negative 
number is not a physical, but a mathematical conception, 
which may find a physical representation, or may not, depend
ing on the physical conditions to which it is applied. The 
negative number thus is just as imaginary, and just as real, 
depending on the case to which it is applied, as the imaginary 
number V — 1, and the only difference is, t ha t we have become 
familiar with the negative number a t an earlier age, where we 
wer? less critical, and thus have taken it for granted, become 
familiar with it by use, and usually do not realize tha t it is 
a mathematical conception, and not a physical reality. When 
we first learned it, however, it was quite a step to become 
accustomed to saying, 5 - 7 = - 2 , and not simply, 5—7 is 
impossible. 

Multiplication and Division. 

4. If we have a bunch of 4 horses, and another bunch of 4 
horses, and still another bunch of 4 horses, and add together 
the three bunches of 4 horses each, we get, 

4 horses + 4 horses + 4 horses = 12 horses", 
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or, as we express it, 

3 X 4 horses = 12 horses. 

The operation of multiple addition thus leads to the next 
operation, multiplication. Multiplication is multiple addi
tion, 

bXa = c, 

thus means 
a + a + a + . .. (b terms) = c . 

Just like addition, multiplication can always be carried 
out. 

Three groups of 4 horses each, give 12 horses. Inversely, if 
we have 12 horses, and divide them into 3 equal groups, each 
group contains 4 horses. This gives us the reverse operation 
of multiplication, or division, which is written, thus : 

12 horses 
g = 4 horses; 

or, in general, 
c 

T - a . 

If we have a bunch of 12 horses, and divide it into two equal 
groups, we get 6 horses in each group, thus : 

12 horses „ , 
2 = 6 horses, 

if we divide into 4 equal groups, 

12 horses „ . 
-. = 3 horses. 
4 

If now we a t tempt to divide the bunch of 12 horses into 5 equal 
groups, we find we cannot do it; if we have 2 horses in each 
group, 2 horses are left over; if we put 3 horses in each group, 
we do not have enough to make 5 groups; that is, 12 horses 
divided by 5 is impossible; or, as we usually say; 12 horses 
divided by 5 gives 2 horses and 2 horses left over, which is 
written, 

-¡r = 2, remainder 2. 
o 
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Thus it is seen tha t the reverse operation of multiplication, 
or division, cannot always be carried out. 

5. If we have 10 apples, and divide them into 3, we get 3 
apples in each group, and one apple left over. 

- 5 - = 3, remainder 1, o 

we may now cut the left-over apple into 3 equal parts , in which 
case, 

In the same manner, if we have 12 apples, we can divide 
into 5, by cutt ing 2 apples each into 5 equal pieces, and get 
in each of the 5 groups, 2 apples and 2 pieces. 

T - 2 + 2 > 4 - 2 * -

To be able to carry the operation of division through for 
all numerical values, makes it necessary to introduce a new 
unit, smaller than the original unit, and derived as a part of it. 

Thus, if we divide a string of 10 feet length into 3 equal 
parts , each par t contains 3 feet, and 1 foot is left over. One 
foot is made up of 12 inches, and 12 inches divided into 3 gives 
4 inches; hence, 10 feet divided by 3 gives 3 feet 4 inches. 

Division leads us to a new form of numbers : the fraction. 
The fraction, however, is just as much a mathematical con

ception, which sometimes may be applicable, and sometimes 
not, as the negative number. In the above instance of 12 
horses, divided into 5 groups, it is not applicable. 

12 horses , 
g = 2$ horses 

is impossible; we cannot have fractions of horses, and what 
we would get in this a t t empt would be 5 groups, each com
prising 2 horses and some pieces of carcass. 

Thus, the mathematical conception of the fraction is ap
plicable to those physical quantities which can be divided into 
smaller units , but is not applicable to those, which are indi
visible, or individuals, as we usually call them. 
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Involution and Evolution. 

6. If we have a product of several equal factors, as, 

4 X 4 X 4 = 64, 

it is written as, 4 3 = 64 ; 

or, in general, ab = c. 

The operation of multiple multiplication of equal factors 
thus leads to the next algebraic operation—involution; just as 
the operation of multiple addition of equal terms leads to the 
operation of multiplication. 

The operation of involution, defined as multiple multiplica
tion, requires the exponent 6 to be an integer number; 6 is the 
number of factors. 

Thus 4 - 3 has no immediate meaning; it would by definition 
be 4 multiplied (—3) times with itself. 

Dividing continuously by 4, we get, 4 6 ^ 4 = 4 S ; 4*-^4 = 4 4 ; 
4 4 + 4 = 4 3 ; etc., and if this successive division by 4 is carried 
still further, we get the following series: 

or, in general, 

4 3 4 X 4 X 4 
4 4 = 4 X 4 = 42 

42 4 x 4 

4 4 
= 4 = 41 

41 4 

4 ~ 4 
= 1 = 40 

40 1 
4 ~i 

1 
~ 4 

= 4 - 1 

4 - = ^ 4 
4 4 * 

1 
4 X 4 

= 4 - 2 = 
1 
42 

4 42 
1 

= 4 - 3 = 
1 

4 42 " 4 X 4 X 4 

ab' 

a P = l . 

= 4 - 3 = 43'' 
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Thus, powers with negative exponents, as a-*, are the 

reciprocals of the same powers with positive exponents : ^ . 

7. From the definition of involution then follows, 

ahXan = ab+n, 

because « 6 means the product of b equal factors a, and a" the 
product of n equal factors a, and ab X a" thus is a product hav
ing b+n equal factors a. For instance, 

4 3 X 4 2 = ( 4 x 4 x 4 ) X ( 4 x 4 ) = 4 5 . 

The question now arises, whether by multiple involution 
we can reach any further mathematical operation. For instance, 

may be written, 

(4 3 ) 2 = 4 3 X 4 3 

= ( 4 X 4 X 4 ) X ( 4 X 4 X 4 ) ; 

= 4«; 

und in the same manner, 

(a i , )" = a 6 n ; 

t ha t is, a power ab is raised to the n t h power, by multiplying 
its exponent. Thus also, 

(a f t)" = (a n )*; 

t h a t is, the order of involution is immaterial. 
Therefore, multiple involution leads to no further algebraic 

operations. 
8. 4 3 = 64; 

t ha t is, the product of 3 equal factors 4, gives 64. 
Inversely, the problem may be, to resolve 64 into a product 

of 3 equal factors. Each of the factors then will be 4. This 
reverse operation of involution is called evolution, and is written 
thus, 

^ 6 4 = 4 ; 
or, more general, 

i>/~ 
v c = o . 
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^/c thus is defined as that number a, which, raised to the power 
b, gives c; or, in other words, 

Involution thus far was defined only for integer positive 
and negative exponents, and the question arises, whether powers 

with fractional exponents, as c>> or cb, have any meaning. 
Writing, 

\Cb) = C b 

1_ 
it is seen tha t cb is tha t number, which raised to the power ò, 

i- 6 — 

gives c; tha t is, c>> is Vc , and the operation of evolution thus 
can be expressed as involution with fractional exponent, 

Cb = \ C, 

and 

C T = (CV) = ( v c ) ; 

or, 

Co = ( c ) 6
 = V P , 

and 

( v c ) = v c \ 

Obviously then, t n • 

"v/c = c 6, \ / c "=c" , 

Irrational Numbers. 

9 . Involution with integer exponents, as 4 3 = 64, can ¡ lways 
be carried out. In many cases, evolution can also be carried 

out. For instance, 

^ 6 4 = 4, 

4 1 = 2 ; 

while, in other cases, it cannot be carried out. For instance, 

41= ?. 
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Attempt ing to calculate 42, we get, 

42 = 1.4142135 

and find, no mat te r how far we carry the calculation, we never 
come to an end, but get an endless decimal fraction; tha t is, 
no number exists in our system of numbers, which can express 
42, bu t we can only approximate it, and carry the approxima
tion to any desired degree; some such numbers, as n, have been 
calculated up to several hundred decimals. 

Such numbers as 42, which cannot be expressed in a n y 
finite form, bu t merely approximated, are called irrational 
numbers. The name is just as wrong as the name negative 
number, or imaginary number. There is nothing irrational 
about 42. If we draw a square, with 1 foot as side, the length 
of the diagonal is 4^ feet, a n ( i the length of the diagonal of 
a square obviously is just as rational as the length of the sides. 

Irrat ional numbers thus are those real and existing numbers, 
which cannot be expressed by an integer, or a fraction or finite 
decimal fraction, but give a n endless decimal fraction, which 
does not repeat. 

Endless decimal fractions frequently are met when express
ing common fractions as decimals. These decimal representa
tions of common fractions, however, are periodic decimals, 
t ha t is, the numerical values periodically repeat, and in this 
respect are different from the irrational number, a n d can, due 
to their periodic nature , be converted into a finite common 
fraction. For instance, 2.1387387 
Let 

x = 2.1387387 ; 
then, 

1000x = 2138.7387387 , 
subtracting, 

999x = 2136.6 
Hence, 

2136.6 21366 1187 77 
X ~ 999 ~" 9990 ~ 555" 555-
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Quadrature Numbers. 

io . I t is 

v / +T=(+2) , 
since, 

( + 2 ) x ( + 2 ) = ( + 4 ) ; 
but it also is : 

^ + 4 = ( - 2 ) , 
since, 

( - 2 ) X ( - 2 ) = ( + 4 ) . 

Therefore, 4 T Ï has two values, ( + 2 ) and ( - 2 ) , and in 
evolution we thus first strike the interesting feaiure, t ha t one 
and the same operation, with the same numerical values, gives 
several different results. 

Since all the positive and negative numbers are used up 
as the square roots of positive numbers, the question arises, 
What is the square root of a negative number? For instance, 
4 —4 cannot be —2, as —2 squared gives + 4 , nor can it be + 2 . 

• ( P ï = i¡4X(-1) = ±2\-T, and the question thus re

solves itself in to : Wha t is \ ^ 1 ? 
We have derived the absolute numbers from experience, 

for instance, by measuring distances on a line Fig. 4, from a 
s tar t ing point A. 

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 
I 1 1 (D 1 $ 1 CD I 1 1 

C A B 

FIG. 4. Negative and Positive Numbers. 

Then we have seen tha t we get the same distance from A, 
twice, once Jtoward the right, once toward the left, and this 
has led to the subdivision of the numbers into positive and 
negative numbers. Choosing the positive toward the right, 
in Fig. 4, the negative number would be toward the left (or 
inversely, choosing the positive toward the left, would give 
the negative toward the right). 

If then we take a number, as + 2 , which represents a dis
tance AB, and multiply by ( - 1 ) , we get the distance AC= - 2 
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in opposite direction from A. Inversely, if we take AC = —2, 
and multiply by ( - 1 ) , we get AB= +2; tha t is, multiplica
tion by (—1) reverses the direction, turns it through 180 deg. 

If we multiply + 2 by V — 1, we get + 2 V - 1 , a quanti ty 
of which we do not yet know the meaning. Multiplying once 
more by V—1, we get + 2 X v /~ =Tx V-1 = - 2 ; tha t is, 
multiplying a number + 2 , twice by V — 1, gives a rotation of 
180 deg., and multiplication by V — 1 thus means rotation by 
half of 180 deg.; or, by 90 deg., and + 2 V — 1 thus is the dis-

7=T 

OD 

FIG. 5. 

tance in the direction rotated 90 deg. from +2, or in quadrature 
direction AD in Fig. 5, and such numbers as +2V '—1 thus 
are quadrature numbers, t ha t is, represent direction not toward 
the right, as the positive, nor toward the left, as the negative 
numbers, bu t upward or d o w n w a r d ^ 

For convenience of writing, V — 1 is usually denoted by 
the letter /. 

l i . Just as the operation of subtraction introduced in the 
negative numbers a new kind of numbers, having a direction 
180 deg. different, t ha t is, in opposition to the positive num
bers, so the operation of evolution introduces in the quadrature 
number, as 2?. a new kind of number, having a direction 90 deg. 



THE GENERAL NUMBER. 15 

different; t ha t is, at right angles to the positive and the negative 
numbers, as illustrated in Fig. 6. 

As seen, mathematically the quadrature number is just as 
real as the negative, physically sometimes the negative number 
has a meaning—if two opposite directions exist—; sometimes it 
has no meaning—where one direction only existe. Thus also 
the quadrature number sometimes has a physical meaning, in 
those cases where four directions exist, and has no meaning, 
in those physical problems where only two directions exist. 

+ 4 / 

•+m 

+ 2 / 

- 4 -3 - 3 - 1 0 +1 +2 +3 ri 
—J 

-Zj 

-j 
FIG. 6 . 

For instance, in problems dealing with plain geometry, as in 
electrical engineering when discussing alternating current 
vectors in the plane, the quadrature numbers represent the 
vertical, the ordinary numbers the horizontal direction, and then 
the one horizontal direction is positive, the other negative, and 
in the same manner the one vertical direction is positive, the 
other negative. Usually positive is chosen to the right and 
upward, negative to the left and downward, as indicated in 
Fig. 6. In other problems, as when dealing with time, which 
has only two directions, past and future, the quadrature num
bers are not applicable, but only the positive and negative 
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numbers. In still other problems, as when dealing with illumi
nation, or with individuals, the negative numbers are not 
applicable, but only the absolute or positive numbers. 

Just as multiplication by the negative unit (—1) means 
rotation by 180 deg., or reverse of direction, so multiplication 
by the quadrature unit, j , means rotation by 90 deg., or change 
from the horizontal to the vertical direction, and inversely. 

General Numbers. 

12 . By the positive and negative numbers, all the points of 
a line could be represented numerically as distances from a 
chosen point A. 

FIG. 7. Simple Vector Diagram. 

By the addition of the quadrature numbers, all points of 
the entire plane can now be represented as distances from 
chosen coordinate axes x and y, that is, any point P of the 
plane, Fig. 7, has a horizontal distance, OB — + 3 , and a 
vertical distance, BP= +2]', and therefore is given by a 
combination of the distances, OB= + 3 and BP= +2j. For 
convenience, the act of combining two such distances in quad
rature with each other can be expressed by the plus sign, 
and the result of combination therebv expressed by ÖB \-BP 
= 3 + 2 / . 
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Such a combination of an ordinary number and a quadra
ture number is called a general number or a complex quantity. 

The quadrature number jb thus enormously extends the 
field of usefulness of algebra, by affording a numerical repre
sentation of two-dimensional systems, as the plane, by the 
general number a + jb. They are especially useful and impor
t an t in electrical engineering, as most problems of alternating 
currents lead to vector representations in the plane, and there
fore can be represented by the general number a+jb; tha t is, 
the combination of the ordinary number or horizontal distance 
o, and t h e quadrature number or vertical distance jb. 

f 

1 1 0 

) < 

F I G . 8. Vector Diagram. 

Analytically, points in the plane are represented by their 
two coordinates: the horizontal coordinate, or abscissa x, and 
the vertical coordinate, or ordinate y. Algebraically, in the 
general number a+jb both coordinates are combined, a being 
the X coordinate, jb the y coordinate. 

Thus in Fig. 8, coordinates of the points are, 

Pi: x = + 3 , y= +2 P2: x = + 3 y= - 2 , 

P3: x = - 3 , y - +2 Pt: i - - 3 y= - 2 , 

and the points are located in the plane by the numbers: 

P 1 = 3 + 2 / P a = 3 - 2 / P 3 = - 3 + 2 j /%= - 3 - 2 / 
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1 3 . Since already the square root of negative numbers has 
extended the system of numbers by giving the quadrature 
number, the question arises whether still further extensions 
of the system of numbers would result from higher roots of 
negative quantities. 

For instance, 
4 ~ r = ? 

The meaning of 4~^1 we find in the same manner as tha t 
of 4~=T. 

A positive number a m a y be represented on the horizontal 
axis as P. 

Multiplying a by 4 ~ 1 gives a 4 — 1 , whose meaning we do 
not yet know. Multiplying again and again by 4 — 1 , we get, after 
four multiplications, a (4—1) 4 = —a; t ha t is, in four steps we 
have been carried from a to —a, a rotation of 180 deg., and 

jgO 
4—1 thus means a rotation of —— = 45 deg., therefore, o4—1 4 
is the point P i in Fig. 9, a t distance a from the coordinate 
center, and under angle 45 deg., which has the coordinates, 

x = ~= and y = -^=j; or, is represented by the general number, 

P -«*±/ 
V2 

4 — 1, however, may also mean a rotation by 135 deg. t o P 2 , 
since this, repeated four times, gives 4X135 = 540 deg., 
or the same as 180 deg., or it may mean a rotation by 225 deg. 
or by 315 deg. Thus four points exist, which represent a 4 — 1; 
the points: 

p + 1+î p - ! + / P i — ^ - a , p , „ _ _ a , 

- - W „ . P4 ' l J a . 
V 2 V'2 

Therefore, 4 - 1 is still a general number , consisting of an 
ordinary and a quadrature number, and thus does not extend 
our system of numbers any further. 
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In the same manner, V + l can be found; it is tha t number, 
which, multiplied n times with itself, gives + 1 . Thus it repre-

. u 360 , 
sents a rotation by — - deg., or any multiple thereof; tha t is, 

i. j . 360 , 360 
the X coordinate is cos qX—, the y coordinate sin qX—, 

n n 
and, 

360 360 
+ 1 =cos qX (-7 sin g X 

where q is any integer number. 

FIG. 9. Vector Diagram a 

There are therefore n different values of o v ' + 1 , which lie 
equidistant on a circle with radius 1, as shown for n = 9 in 
Fig. 10. 

14. In the operation of addition, a+b = c, the problem is, 
a and b being given, to find c. 

The terms of addition, a and ò, are interchangeable, or 
equivalent, thus : a+b = b + a, and addition therefore has only 
one reverse operation, subtraction; c and b being given, a is 
found, thus : a = c -b, and c and o being given, b is found, thus: 
6 = c - o . Either leads to the same operation—subtraction. 

The same is the case in multiplication; a X 6 = c. The 
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factors a and b are interchangeable or equivalent; a X ò = ò X a 
* . c c 

and the reverse operation, division, o = r is t he same as b = —. 
6 a 

In involution, however, a 6 = c, the two numbers a and b 
are not interchangeable, and ab is not equal to b". For instance 
4 3 = 64 and 3 4 = 81. 

Therefore, involution has two reverse operations: 
(a) c and b given, o to be found, 

o = V c : 
or evolution, 

F I G . 10. Points Determined by + 1. 

(6) c and a given, 6 to be found. 

6 = log a c; 
or, logarithmation. 

Logarithmation. 

15 . Logarithmation thus is one of the reverse operations 
of involution, and the logarithm is the exponent of involution. 

Thus a logarithmic expression may be changed to an ex
ponential, and inversely, and the laws of logarithmation are 
the laws, which the exponents obey in involution. 

1. Powers of equal base are multiplied by adding the 
exponents: abXan=ab+n. Therefore, the logarithm of a 
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product is the sum of the logarithms of the factors, thus logo cXd 
= log« c + loga d. 

2. A power is raised to a power by multiplying the exponents : 
(ab)n = abn. 

Therefore the logarithm of a power is the exponent times 
the logarithm of the base, or, the number under the logarithm 
is raised to the power n, by multiplying the logarithm by n: 

loga C n = = l l loga C, 

loga 1 = 0 , because a0 = 1. If the base a > 1, logo c is positive, 
if c > l , and is negative, if c < l , but > 0 . The reverse is the 
case, if a<l. Thus, the logarithm traverses all positive and 
negative values for the positive values of c, and the logarithm 
of a negative number thus can be neither positive nor negative. 

loga (~c )= loga c+loga (— 1), and the question of finding 
the logarithms of negative numbers thus resolves itself into 
finding the value of log a ( - 1 ) . 

There are two standard systems of logarithms one with 
the base £ = 2.71828. . .*, and the other with the base 10 is 
used, the former in algebraic, the latter in numerical calcula
tions. Logarithms of any base a can easily be reduced to any 
other base. 

For instance, to reduce b = log« c to the base 1 0 : 6 = log„ c 
means, in the form of involution : a 6 = c. Taking the logarithm 
hereof gives, b logio a = logic- c, hence, 

, logioc logioc 
o = i ; or logo c = ; . 

logio a logioa 
Thus, regarding the logarithms of negative numbers, we need 

to consider only logio ( - 1 ) or log, ( - l ì . 

If fx = log, ( - 1 ) , then «*» = - 1 , 

and since, as will be seen in Chapter I I , 

£'* = cos x+j sin X, 

it follows tha t , 

cos x+j sin X = —1, 

* Regarding s, see Chapter I I , p. 7 1 . 
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Hence, x = n, or an odd multiple thereof, and 

log . ( - l )= jVr (2n + l ) , 

where n is any integer number. 
Thus logarithmation also leads to the quadrature number 

j , but to no further extension of the system of numbers. 

Quaternions. 

16 . Addition and subtraction, multiplication and division, 
involution and evolution and logarithmation thus represent all 
the algebraic operations, and the system of numbers in which 
all these operations can be carried out under all conditions 
is t ha t of the general number, a+jb, comprising the ordinary 
number a and the quadrature number jb. The number a as 
well as ò may be positive or negative, may be integer, fraction 
or irrational. 

Since by the introduction of the quadrature number jb, 
the application of the system of numbers was extended from the 
line, or more general, one-dimensional quant i ty , to the plane, 
or the two-dimensional quanti ty, the question arises, whether 
the system of numbers could be still further extended, into 
three dimensions, so as to represent space geometry. While 
in electrical engineering most problems lead only to plain 
figures, vector diagrams in the plane, occasionally space figures 
would be advantageous if they could be expressed algebra
ically. Especially in mechanics this would be of importance 
when dealing with forces as vectors in space. 

In the quaternion calculus methods have been devised to 
deal with space problems. The quaternion calculus, however, 
has not yet found an engineering application comparable with 
t ha t of the general number, or, as it is frequently called, the 
complex quantity. The reason is tha t the quaternion is not 
an algebraic quanti ty, and the laws of algebra do not uniformly 
apply to it. 

1 7 . With the rectangular coordinate system in the plane, 
Fig. 11, the x axis may represent the ordinary numbers, the y 
axis the quadrature numbers, and multiplication by j = \ / — 1 
represents rotation by 90 deg. For instance, if Pi is a point 
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a+ß = 3+2j, the point P2, 90 deg. av.ay from P i , would 
be: 

P 2 = jP i =j(a+jb) = j (3 +2/) = - 2 + 3 / , 

To extend into space, we have to add the third or z axis, 
as shown in perspective in Fig. 12. Rotation in the plane xy, 
by 90 deg., in the direction +x to +y, then means multiplica
tion by j . In the same manner, rotation in the yz plane, by 
90 deg., from +y to +z, would be represented by multiplica-

*3 

•*3 

FIG. 11. Vectors in a Plane. 

tion with h, and rotation by 90 deg. in the zx plane, from +z 
to +x would be presented by k, as indicated in Fig. 12. 

All three of these rotors, j , h, k, would be V - 1 , since each, 
applied twice, reverses the direction, that is, represents multi
plication by ( — 1). 

As seen in Fig. 12, starting from +x, and going to +y, 
then to +z, and then to +x, means successive multiplication 
by j , h and k, and since we come back to the starting point, the 
total operation produces no change, tha t is, represents mul
tiplication by ( + 1). Hence, it must be, 

jhk= + 1 . 
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If we now proceed again from x, in positive rotation, but 
first tu rn in the xz plane, we reach by multiplication with k 
the negative z axis, — z, as seen in Fig. 13. Fur ther multiplica-

+z' 

I IG. 13. Vectors in Space, khj= —1. 

tion by h brings us to +y, and multiplication by j to —x, and 
in this case the result of the three successive rotat ions by 

Algebraically this is not possible, since each of the three quan
tities is y/—1, and V - l x V — I X V — 1 = —V—l, and not 
( + 1). 

+ 2, 
4 < 
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90 deg., in the same direction as in Fig. 12, but in a different 
order, is a reverse; tha t is, represents (—1). Therefore, 

- 1 , 
and hence, 

jhk — —khj. 

Thus, in vector analysis of space, we see tha t the fundamental 
law of algebra, 

oXo = 6Xa , 

does not apply, and the order of the factors of a product is 
not immaterial, but by changing the order of the factors of the 
product jhk, its sign was reversed. Thus common factors can
not be canceled as in algebra; for instance, if in the correct ex
pression, jhk = —khj, we should cancel by /, h and k, as could be 
done in algebra, we would get + 1 = — 1 , which is obviously wrong. 

For this reason all the mechanisms devised for vector analysis 
in space have proven more difficult in their application, and 
have not yet been used to any great extent in engineering 
practice. 

B. ALGEBRA OF THE GENERAL NUMBER, OR COMPLEX 
QUANTITY. 

Rectangular and Polar Coordinates. 

i8 . The general number, or complex quantity, a+jb, is 
the most general expression to which the laws of algebra apply. 
I t therefore can be handled in the same manner and under 
the same rules as the ordinary number of elementary arithmetic. 
The only feature which must be kept in mind is that f = — 1, and 
where in multiplication or other operations j 2 occurs, i t is re
placed by its value, - 1 . Thus, for instance, 

(a +jb)(c +jd) =ac+jad +jbc +j2bd 
= ac + jad + jbc — bd 
= (ac - bd) + j{ad+be). 

Herefrom it follows tha t all the higher powers of j can be 
eliminated, thus : 

?•'=/, j 3 — i f j 3 — y , y*= + i ; 
f = + j , f = - l , f - —j) j " - + i ; 
f>= +j, . . . etc 
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In distinction from the general number or complex quant i ty , 
the ordinary numbers, + o and —a, are occasionally called 
scalars, or real numbers. The general number thus consists 
of the combination of a scalar or real number and a quadrature 
number, or imaginary number. 

Since a quadrature number cannot be equal to an ordinary 
number it follows tha t , if two general numbers are equal, 
their real components or ordinary numbers, as well as their 
quadrature numbers or imaginary components must be equal, 
thus, if 

a + jb = c+jd, 
then, 

a = c and b = d. 

Every equation with general numbers thus can be resolved 
into two equations, one containing only the ordinary numbers, 
the other only the quadrature numbers. For instance, if 

x + jy = 5-3], 
then, 

x = 5 and y = — 3 . 

19. The best way of getting a conception of the general 
number, and the algebraic operations with it, is to consider 
the general number as representing a point in the plane. Thus 
the general number a + 76 = 6 + 2 . 5 / may be considered as 
representing a point P, in Fig. 14, which has the horizontal 
distance from the y axis, OA=BP = a = f>, and the vertical 
distance from the x axis, OB = AP = 6 = 2 . 5 . 

The total distance of the point P from the coordinate center 
0 then is 

= VaJ+b2 = V& + 2 . 5 2 = 6.5, 

and the angle, which this distance OP makes with the x axis, 
is given by 

AP 
t a n 0 = = 

OA 
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Instead of representing the general number by the two 
components, a and 6, in the form a+jb, it can also be repre
sented by the two quanti t ies: the distance of the point JP from 
the center 0, 

c = Va2+b*; 

and the angle between this distance and the x axis, 

tan 0 =—. 
a 

FIG. 14. Rectangular and Polar Coordinates. 

Then referring to Fig. 14, 

a = ccoad and b = csmd, 

and the general number a+jb thus can also be written in the 
form, 

c(cos 6 +j sin 0). 

The form a+jb expresses the general number by its 
rectangular components a and b, and corresponds to the rect
angular coordinates of analytic geometry; a is the x coordinate, 
b the y coordinate. 

The form c(cos# + / s i n 6) expresses the general number by 
what may be called its polar components, the radius c and the 
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angle 0, and corresponds to the polar coordinates of analytic 
geometry, c is frequently called the radius vector or scalar, 
0 the phase angle of the general number. 

While usually the rectangular form a+jb is more con
venient, sometimes the polar form c(cos 0 + / sin 6) is preferable, 
and transformation from ONE form to the other therefore fre
quently applied. 

Addition and Subtraction. 

20. If o 1 + j O i = 6 + 2 . 5 ; is represented by the point P i ; 
this point is reached by going the horizontal distance ai = 6 
and the vertical distance 6 i = 2 . 5 . If a2 +jb2 = 3 + 4/ is repre
sented by the point P2, this point is reached by going the 
horizontal distance a 2 = 3 and the vertical distance 02 = 4. 

The sum of the two general numbers (ai +/i>i) + (a2 +jb2) = 
( 6 + 2 . 5 / ) + ( 3 + 4 / ) / t h e n is given by point Po, which is reached 
by going a horizontal distance equal to the sum of the hor
izontal distances of P i and P2: ao = a\ + 0 2 = 6 + 3 = 9, and a 
vertical distance equal to the sum of the vertical distances of 
P i and P 2 : 6 0 = 6i + ò 2 = 2 . 5 + 4 = 6.5, hence, is given by the 
general number 

a 0 + j b 0 = (ai + a 2 ) +/(6i +b2) 
= 9 + 6 . 5 / . 

Geometrically, point Po is derived from points P i and P 2 

by the diagonal UIJ

0 of the parallelogram OPiP0P2, constructed 

with OP y and 0P2 as sides, as seen in Fig. 15. 
Herefrom it follows tha t addition of general numbers 

represents geometrical combination by the parallelogram law. 
Inversely, if Po represents the number 

a 0 + / t \ ) = 9 + 0..)/, 

and P i represents the number 

a i + / ò i = 6 + 2 . 5 / , 

the difference of these numbers will be represented by a point 
P 2 , which is reached by going the difference of the horizontal 
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F I G . 1 3 . Addition and Subtraction of Vectors. 

This difference a2+jb2 is represented by one side 0P2 of 

the parallelogram OPiP0P2, which has OPi as the other side, 

and OP0 as the diagonal. 

Subtraction of general numbers thus geometrically represents 

the resolution of a vector 0P0 into two components 0P¡ and 

0P2, by the parallelogram law. 
Herein lies the main advantage of the use of the general 

number in engineering calculation : If the vectors are represented 
by general numbers (complex quantities), combination and 
resolution of vectors by the parallelogram law is carried out by 

distances and of the vertical distances of the points Po and 
P i . P2 thus is represented by 

02=00— ai = 9 — 6 = 3 , 
and 

6 2 = o 0 - 6 i = 6 . 5 - 2 . 5 = 4. 

Therefore, the difference of the two general numbers (a 0+j'6o) 
and (ai +jbi) is given by the general number: 

a2+jb2= (do -a i ) +j{b0 - 6 1 ) 
= 3+4? , 

as seen in Fig. 15. 
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simple addition or subtraction of their general numerical values, 
t ha t is, by the simplest operation of algebra. 

21 . General numbers are usually denoted by capitals, and 
their rectangular components, the ordinary number and the 
quadrature number, by small letters, t h u s : 

A = ai +ja2; 

the distance of the point which represents the general number A 
from the coordinate center is called the absolute value, radius 
or scalar of the general number or complex quant i ty . I t is 
the vector a in the polar representation of the general number : 

vl = a(cos 0+j sin 0), 

and is given by a = V a i 2 + o 2

2 . 
The absolute value, or scalar, of the general number is usually 

also denoted by small letters, but sometimes by capitals, and 
in the lat ter case it is distinguished from the general number by 
using a different type for the latter, or underlining or dottin«: 
it, t h u s : 

A = ai+ja2; or A = at +ja2; or A=ax +ja2 

or A=a\+ja2; or A = o i + / o 2 

a = v / a i 2 + a 2

2 ; or A^Vaf +a2

2, 

and ai + / a 2 = a(cos 0 + / s ind) ; 

or ai + ja2 = A (cos 0+j sin 6). 

22. The absolute value, or scalar, of a general number is 
always an absolute number, and positive, tha t is, the sign of the 
rectangular component is represented in the angle 6. Thus 
referring to Fig. 16, 

A = d i + / a 2 = 4 + 3 / ; 

gives, a = v / d 1

2 + d 2

2 = 5; 

t a n 0 = f =0 .75 ; 

0 = 37 deg.; 

and A = 5 (cos 37 deg. +jsin 37 deg). 
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t an 0 = - - = - O . 7 5 ; 

0 = - 3 7 deg.; or 

i 

= 180--37 = 143 deg. 

-4 44 4+3/ 

3/ 43/ _ *K + 

4+3/ 

3/ 

-a?" 5 V -3 / 

- 4 - 3 j -4 44 4 

FIG. 16. Representation of General Numbers. 

Which of the two values of 6 is the correct one is seen from 
the condition di = a c o s 0 . As ai is positive, + 4 , it follows 
tha t cos 6 must be positive; cos (—37 deg.) is positive, cos 143 
deg. is negative; hence the former value is correct: 

A =5jcos( - 3 7 deg.) + / sin( - 3 7 deg.)} 
= 5(cos 37 deg. —/ sin 37 deg.). 

Two such genera! numbers as (4+3/ ) and (4—3/), or, 
in general, 

(a+jb) and (a-jb), 

are called conjugate numbers. Their product is an ordinary 
and not a general number, t hus : (a+jb)(a-jb) = a2 +b2. 

The expression 
A = a1 +ja2 = 4~3j 

gives 
« = v / a i 2 + a 2

2 = 5; 
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The expression 

A=a\+ja2 = —4 4-3/ 

gives 

a = v / a i 2 + a 2

2 = 5; 

3 
t a n 0 = - - = - 0 . 7 5 ; 

4 

0 = - 3 7 deg. or = 180 - 3 7 = 143 deg. ; 

but since a x = a cos 6 is negative, —4, cos 0 must be negative, 
hence, 0 = 143 deg. is the correct value, and 

A = 5 ( c o s 143 deg. + / s i n 143 deg.) 
= 5( —cos 37 deg. + / sin 37 deg.) 

The expression 

A = ai + /<x2 = —4 —3/ 

gives 
a= v / a i 2 + a 2

2 = 5; 

0 = 3 7 deg.; cr = 1 8 0 + 3 7 = 217 deg.; 

but since a i = a cos 6 is negative, —4, cos 6 must be negative, 
hence 0 = 217 deg. is the correct value, and, 

4 = 5 (cos 217 deg. + / sin 217 deg.) 
= 5 ( — cos 37 deg. — / sin 37 deg.) 

The four general numbers, + 4 + 3 / , + 4 — 3 / , — 4 + 3 / , and 
- 4 —3/ , have the same absolute value, 5, and in their repre

sentations as points in a plane have symmetrical locations in 
the four quadrants , as shown in Fig. 16. 

As the general number A = a\+ja2 finds its main use in 
representing vectors in the plane, it very frequently is called 
a vector quanti ty, and the algebra of the general number is 
spoken of as vector analysis. 

Since the general numbers A°=ai+ja2 can be made to 
represent the points of a plane, they also may be called plane 
numbers, while the positive and negative numbers, + o and—o, 
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FIG. 17 . Path of Steam in a Two-wheel Stage of an Impulse Turbine. 

Let Fig. 17 represent diagrammatically a tangential section 
through the bucket rings of the turbine wheels. W\ and W% 
are the two revolving wheels, moving in the direction indicated 
by the arrows, with the velocity s = 4 0 0 feet per sec. / are 
the stationary intermediate buckets, which turn the exhaust 
steam from the first bucket wheel Wit back into the direction 
required to impinge on the second bucket wheel W2. The 
steam jet issues from the expansion nozzle at the speed s n = 2200 

may be called the linear numbers, as they represent the points 
of a line. 

Example: Steam Path in a Turbine. 

23. As an example of a simple operation with general num
bers one may calculate the steam path in a two-wheel stage 
of an impulse steam turbine. 
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feet per sec., and under the angle 0 O =2O deg., against the first 
bucket wheel Wi. 

The exhaust angles of the three successive rows of buckets, 
Wi, I, and W2, are respectively 24 deg., 30 deg. and 45 deg. 
These angles are calculated from the section of the bucket 
exit required to pass the steam a t its momentary velocity, 
and from the height of the passage required to give no steam 
eddies, in a manner which is of no interest here. 

As friction coefficient in the bucket passages may be assumed 
Ay = 0.12; tha t is, the exit velocity is 1—k f=0.88 of the entrance 
velocity of the steam in the buckets. 

Y - 2 / 

Fio. 18. Vector Diagram of Velocities of Steam in Turbin». 

Choosing then as x-axis the direction of the tangential 
velocity of the turbine wheels, as t/-axis the axial direction, 
the velocity of the steam supply from the expansion nozzle is 
represented in Fig. 18 by a vector OS0 of length s 0 = 2200 feet 
per s e c , making an angle 0o = 2O deg. with the x-axis; hence, 
can be expressed by the general number or vector quant i ty : 

$o = s 0 (cos do + / sin do) 
=2200 (cos 20 deg. + / sin 20 deg.) 
= 2070 + 750/f t . per sec. 

The velocity of the turbine wheel Wx is s = 400 feet per second, 
and represented in Fig. 18 by the vector OS, in horizontal 
direction. 
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The relative velocity with which the steam enters the bucket 
passage of the first turbine wheel Wx thus is : 

Si = S0—s 

= (2070 + 750]) - 4 0 0 

= 1670 + 750/f t . per sec. 

This vector is shown as OSi in Fig. 18. 
The angle 0h under which the steam enters the bucket 

passage thus is given by 

750 
tan 0 i = jg7Q = 0.450, as 0 X =24.3 deg. 

This angle thus has to be given to the front edge of the 
buckets of the turbine wheel Wx. 

The absolute value of the relative velocity of steam jet 
and turbine wheel Wi, a t the entrance into the bucket passage, 
is 

si = v / 1670 2 + 750 2 = 1830 ft. per sec. 

In traversing the bucket passages the steam velocity de
creases by friction etc., from the entrance value st to the 
exit value 

s 2 = s 1 ( l - f c / ) = 1830 X 0.88 = 1610 ft, pe r sec , 

and since the exit angle of the bucket passage has been chosen 
as 0 2 = 24 deg., the relative velocity with which the steam 
leaves the first bucket wheel W% is represented by a vector 
OS~2 in Fig. 18, of length s2 = 1610, under angle 24 deg. The 
steam leaves the first wheel in backward direction, as seen in 
Fig. 17, and 24 deg. thus is the angle between the steam jet 
and the negative x-axis; hence, 0 2 = 1 8 0 - 2 4 = 156 deg. is the 
vector angle. The relative steam velocity at the exit from 
wheel W\ can thus be represented by the vector quanti ty 

¿>2 = s 2(cos 02 + / sin 0 2 ) 

= 1610 (cos 156 deg. + / sin 156 deg.) 

= - 1 4 7 0 + 6 5 5 / . 

Since the velocity of the turbine wheel Wx is s = 400, the 
velocity of the steam in space, after leaving the first turbine 
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wheel, t h a t is, t he velocity with which the steam enters the 
intermediate / , is 

S 3 = S 2 + s 

= ( - 1 4 7 0 +655/) +400 

= - 1 0 7 0 + 655/, 

and is represented by vector OS3 in Fig. 18. 
The direction of this s team jet is given by 

655 
tan 0 3 = - j j j ^ p - 0 . 6 1 3 , 

as 

0 3 = - 3 1 . 6 deg.; or, 1 8 0 - 3 1 . 6 = 148.4 deg. 

The lat ter value is correct, as cos Q¿ is negative, and sin 0 3 is 
positive. 

The steam jet thus enters the intermediate under the angle 
of 148.4 deg.; tha t is, the angle 180 —148.4 = 31.6 deg. in opposite 
direction. The buckets of the intermediate J thus must be 
curved in reverse direction to those of the wheel ~W\, and must 
be given the angle 31.6 deg. a t their front edge. 

The absolute value of the entrance velocity into the inter
mediate / is 

s 3 = v / 1070 2 + 655 2 = 1255 ft. per sec. 

In passing through the bucket passages, this velocity de
creases by friction, to the value : 

« 4 = 8 3 ( 1 - * , ) = 1255X0.88 = 1105 ft. per s ec , 

and since the exit edge of the intermediate is given the angle: 
04 = 30 deg., the exit velocity of the steam from the intermediate 
is represented by the vector OS4, in Fig. 18, of length S 4 = 1105, 
and angle 0 4 = 3 0 deg., hence, 

¿¡4=1105 (cos 30 deg. + / sin 30 deg.) 

= 9 5 5 + 550/ ft. per sec. 

This is t h e velocity wi th which the s team jet impinges 
on the second turbine wheel W2, and as this wheel revolves 



THE GENERAL NUMBER. 37 

with velocity s = 400, the relative velocity, t ha t is, the velocity 
with which the steam enters the bucket passages of wheel W2, is, 

Ss = S4-s 

= (955 + 5 5 0 / ) - 4 0 0 

=555 + 550/ ft. per s e c ; 

and is represented by vector 0<S5 in Fig. 18. 
The direction of this steam jet is given by 

550 
tan 0 S = — = 0 . 9 9 0 , as 0 5 = 4 4 . 8 deg. 

Therefore, the entrance edge of the buckets of the second 
wheel W2 must be shaped under angle 05 = 44.8 deg. 

The absolute value of the entrance velocity is 

s 5 = y/tttf+bbW = 780 ft. per sec. 

In traversing the bucket passages, the velocity drops from 
the entrance value S5, to the exit value, 

s 6 = s 5 ( l -Ay) =780 X 0.88 = 690 ft. per sec. 

Since the exit angles of the buckets of wheel W2 has been 
chosen as 45 deg., and the exit is in backward direction, 0 6 = 
180—45=135 deg., the steam jet velocity at the exit of the 
bucket passages of the last wheel is given by the general number 

¿>6 =S6(cos 06 + / sin 0 6 ) 

= 690 (cos 135 deg. + / sin 135 deg.) 

= - 4 8 7 + 4 8 7 / f t . per sec , 

and represented by vector OS6 in Fig. 18. 
Since s = 400 is the wheel velocity, the velocity of the 

steam after leaving the last wheel W2, tha t is, the " l o s t " 
or " rejected " velocity, is 

5 7 = «?„+* 
= ( - 4 8 7 + 4 8 7 / ) + 4 0 0 

= - 8 7 + 4 8 7 / ft. per s ec , 

and is represented by vector OS7 in Fig. 18. 
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S 7 = \ / 8 7 2 + 487 2 = 495 ft, per sec. 

Multiplication of General Numbers. 

24. If A=a\+ja2 and B = bi+jh2, are two general, or 
plane numbers, their product is given by multiplication, t h u s : 

AB = (o 1 +jo 2 ) (6 1 +y62) 
= «ibi +ja\b2 +ja2bi +j2a2b2, 

and since / 2 = — 1, 

AB= (ai&i —a2b2) + / ( a i o 2 + a 2 bi) , 

and the product can also be represented in the plane, by a point, 

Ç = c i + / c 2 , 

where, 
ci =0i6i —a 2 6 2 , 

and 
c2 = a,\b2+a2bi. 

For instance, A = 2 + / multiplied by 5 = 1 + 1 . 5 / gives 

^ = 2 X 1 - 1 X 1 . 5 = 0.5, 

c 2 = 2 X l . 5 + l X l = 4 ; 
hence, 

C = 0 .5+4 / , 

as shown in Fig. 19. 
25. The geometrical relation between the factors A and B 

and the product Ç is better shown by using the polar expression; 
hence, substituting, 

CLi = 

a2 

which gives 

= a cos a 1 ^ Ò! = 6 cos ß 1 
= a s i n « J 6 2 = 6 sin ß\' 

0 = v / a 1

2 + a 2

2 

a 2 

tan a 
ai 

O = VV+&2

2 

and b 2 

tan /? = =-=-
Ih 

The direction of the exhaust steam is given by, 

487 
t a n 0 7 = — s ^ - = - 5 . 6 , as 0 7 = 180 - 8 0 = 100 deg., 

oí 
and the absolute velocity is, 
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the quanti t ies may be written thus : 

A = a(cos a+jsin a ) ; 
-ß = 6(cos ß+jsin ß), 

and then, 

Ç = AB = ao(cos a + / s i n «)(cos ß + / sin ß) 
= ab I (cos a cos ß - s i n a sin ß) +/(cos a sin ß +sin a cos /?) j 
= ab {cos (a +/?) + / sin (a +/?)} ; 

FIG. 19. Multiplication of Vectora 

t ha t is, two general numbers are multiplied by multiplying their 
absolute values or vectors, a and b, and adding their phase angles 
ac and ß. 

Thus, to multiply the vector quantity, A = ai +ja2 = a (cos 
<v + / sin tt)by B = bi +jb2 = b (cos ß+jsin ß) the vector OA in Fig. 
19, which represents the general number A, is increased by the 
factor o = V / 6 1

2 + 6 2

2 , and rotated by the angle ß, which is given 
b2 

bv tan /? = T — 
0i 

Thus, a complex multiplier B turns the direction of the 
multiplicand A, by the phase angle of the multiplier B, and 
multiplies the absolute value or vector of A, by the absolute 
value of S as factor. 
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The multiplier B is occasionally called an operator, as it 
carries out the operation of rotat ing the direction and changing 
the length of the multiplicand. 

26. In multiplication, division and other algebraic opera
tions with the representations of physical quantities (as alter
nat ing currents, voltages, impedances, etc.) by mathematical 
symbols, whether ordinary numbers or general numbers, it 
is necessary to consider whether the result of the algebraic 
operation, for instance, the product of two factors, has a 
physical meaning, and if it has a physical meaning, whether 
this meaning is such tha t the product can be represented in 
the same diagram as the factors. 

For instance, 3 X 4 = 12; bu t 3 horsesX4 horses does not 
give 12 horses, nor 12 horses 2 , bu t is physically meaningless. 
However, 3 ft. X4 ft. = 12 sq.ft. Thus, if the numbers represent 

horses, multiplication has no physical meaning. If they repre
sent feet, the product of multiplication has a physical meaning, 
but a meaning which differs from tha t of the factors. Thus, 
if on the line in Fig. 20, OA = 3 feet, OB = 4 feet, the product, 
12 square feet, while it has a physical meaning, cannot be 
represented any more by a point on the same line; it is not 
the point OC = 12, because, if we expressed the distances OA 
and OB in inches, 36 and 48 inches respectively, the product 
would be 36X48 = 1728 sq.in., while the distance OC would be 
144 inches. 

27. I n all mathematical operations with physical quantities 
it therefore is necessary to consider a t every step of the mathe
matical operation, whether it still has a physical meaning, 
and, if graphical representation is resorted to , whether the 
nature of the physical meaning is such as to allow graphical 
representation in the same diagram, or not . 

An instance of this general limitation of t h e application of 
mathematics to physical quantities occurs in the representation 
of al ternat ing current phenomena by general numbers, or 
complex quantities. 

4 — i — i 0 (D 
o A B 

+—I—I—I—I—h—9-
c 

i* IG. 20. 
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An alternating current can be represented by a vector 01 
in a polar diagram, Fig. 21, in which one complete revolution 
or 360 deg. represents the time of one complete period of the 
alternating current. This vector 01 can be represented by a 
general number, 

f = t l + J t 2 , 

where i\ is the horizontal, i2 the vertical component of the 
current vector Oí. 

FIG. 2 1 . Current, E . M . F . and Impedance Vector Diagram. 

In the same manner an alternating E.M.F. of the same fre
quency can be represented by a vector OE in the same Fig. 21, 
and denoted by a general number, 

E=ei+je2. 

An impedance can be represented by a general number, 

Z = r + jx, 

where r is the resistance and x the reactance. 
If now we have two impedances, OZ\ and OZ2, Z 1 = r i + j x 1 

and Z2=r2-\-jx2, their product Zi Z2 can be formed mathemat
ically, but it has no physical meaning. 
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If we have a current and a voltage, I = ii+ ji2 and E = a + je2, 
the product of current and voltage is the power P of the alter
nat ing circuit. 

The product of the two general numbers I and E can be 
formed mathematically, IE, and would represent a point C 
in the vector plane Fig. 21. This point C, however, and the 
mathematical expression IE, which represents it, does not give 
the power P of the alternating circuit, since the power P is not 
of the same frequency as / and E, and therefore cannot be 
represented in the same polar diagram Fig. 21, which represents 
I and E. 

If we have a current I and an impedance Z, in Fig. 2 1 : 
7 = ¿ i + j i 2 a n d Z = r+jx, their product is a voltage, and as the 
voltage is of the same frequency as the current, it can be repre
sented in the same polar diagram, Fig. 21 , and thus is given by 
the mathematical product of I and Z, 

E = IZ = (i1+ji2)(r±jx), 

= (}ir —i2x ) +j(i2r +ilx). 

28. Commonly, in the denotation of graphical diagrams by 
general numbers, as the polar diagram of alternating currents, 
those quantities, which are vectors in the polar diagram, as the 
current, voltage, etc., are represented by dotted capitals: E, I, 
while those general numbers, as the impedance, admittance, etc. • 
which appear as operators, t ha t is, as multipliers of one vector, 
for instance the current, to get another vector, the voltage, are 
represented algebraically by capitals without do t : Z = r+jx = 
impedance, etc. 

This limitation of calculation with the mathematical repre
sentation of physical quantities must constantly be kept in 
mind in all theoretical investigations. 

Division of General Numbers. 

29. The division of two general numbers, A=ai+ja2 and 
B = bx+jb2, gives, 

A a\+ja2 

• = ¥ = ö 1 + j 6 2 " 

This fraction contains the quadrature number in the numer
ator as well as in the denominator. The quadrature number 
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can be eliminated from the denominator by multiplying numer
ator and denominator by the conjugate quanti ty of the denom
inator, bi~jb2, which gives: 

( d +/q 2 ) (&i - jb 2 ) _ (aibi +0262) + / (a 2 bi -aib2) 

•~(bi+]b2Ì(bi-jb2)~ bi'+bf 

a.\bi +a2b2 . a2b\ —a\b2 

= ' 6 i 2 + o a

2 + 1 bi2+bf~' 

for instance, 

À 6 + 2 . 5 ; 

•~B 3 + 4 / 

(6+ 2.5/) ( 3 - 4 / ) 

( 3 + 4/) ( 3 - 4 / ) 

2 8 - 1 6 . 5 / 

25 

= 1.12-0.66/. 

If desired, the quadrature number may be eliminated from 
the numerator and left in the denominator by multiplying with 
the conjugate number of the numerator, t hus : 

- Â a\ +ja2 

• " £ _ 6 i + / ö 2 

(ai+]a2)(ai -ja2) 

for instance, 

(Öl+ /Ö2) ( ( l l - / O 2 ) 

O i 2 + a 2

2 

(aiòi + a2b2) +/(f l i6 2 -a2bi)' 

• B 3 + 4 / 

' (6 + 2.5/) (6 -2 .5 / ) 

- (3 + 4/) (6 -2 .5 / ) 

42.25 

28 +16.5/ 

30. Just as in multiplication, the polar representation of 
the general number in division is more perspicuous than any 
other. 
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A = a(cos a +j sin a) be divided by jB = 6(cos ß+j sin ß), 

a(cos a + / s i n a ) 
b(cosß+j sin/3) 
o(cos « + 7 sin a) (cos ß —j sin ¿3) 
6(cos ß+j sin /?)(cos 0— / sin ß) 

a\ (cos a cos ß + sin a sin ¿8) + j(sin a cos ß — cos « sin ß) \ 
= &(cos 2 £+sin 2 /? ) 

= ^{cos (a —/?) + / s i n (a — ß)}. 

T h a t is, general numbers A and B are divided by dividing 
their vectors or absolute values, a and b, and subtracting their 
phases or angles a and ß. 

Involution and Evolution of General Numbers. 

3 1 . Since involution is multiple multiplication, and evolu
tion is involution with fractional exponents, both can be resolved 
into simple expressions by using the polar form of the general 
number. 

A = ai +ja2 = o(cos a+jsin a ) , 
then 

C = A" = a B (cos na+jún na). 

For instance, if 

A = 3 + 4 / = 5 ( c o s 53 deg. +j sin 53 deg.); 
then, 

C = A 4 = 5 4(cos 4 X53 deg. +j sin 4 X53 deg.) 

=625(cos 212 deg. +j sin 212 deg.) 

= 625( - c o s 32 deg. -j sin 32 deg.) 

= 6 2 5 ( - 0 . 8 4 8 - 0 . 5 3 0 /) 

= - 5 2 9 - 3 3 1 j . 

If, A = « ! + / o 2 = o (cos a+j sin a ) , then 

G=VÄ=An = o " feos - +j sin -Ì 

= ( cos — + ? sin — ). 

Let 
t hus : 
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32. If, in the polar expression of A, we increase the phase 
angle a by 2a, or by any multiple of 2K : 2qit, where q is any 
integer number, we get the same value of A, thus : 

A = ajcos(a +2qn) +j sin (a +2<pr)}, 

since the cosine and sine repeat after every 360 deg, or 2tz. 
The n th root, however, is different: 

~ n/-r » / - / a+2qn . . « + 2 O K \ 
C = v \ 4 = V a l e o s — + 1 sin — ). 

\ n 1 n I 
We hereby get n different values of Ç, for q = 0, 1, 2. . .n— 1; 
g = n gives again the same as q = 0 . Since it gives 

a + 2nx a „ 
= - + 2 * ; 

n n 
tha t is, an increase of the phase angle by 360 deg., which leaves 
cosine and sine unchanged. 

Thus, the nth root of any general number has n different 
values, and these values have the same vector or absolute 

term v 7 a , but differ from each other by the phase angle ~ and 

its multiples. 
For instance, let A = - 5 2 9 -331j ' = 625 (cos 212 deg .+ 

; sin 212 deg.) then, 

r, <nr 212+360? . . 212+360g\ (7= i J = <625(cos 1 i + ?sin 1 - I 

= 5(cos 53 + j sin 53) = 3 + 4/ 
= 5(cos 143 + j sin 143) = 5( - c o s 37 + / sin 37) = - 4 + 3 / 
= 5(cos 233 + j sin 233) = 5( - c o s 53 - j sin 53) = - 3 - 4/ 
= 5(cos 323 +j sin 323) = 5(cos 37 -j sin 37) = 4 - 3 / 
= 5(cos 413 + j sin 413) = 5(eos 53 + / sin 53) = 3 + 4/ 

The n roots of a general number A = a(cos a+j sin a) differ 
' 2tc 

from each other by the phase angles —, or 1/nth of 360 deg., 

and since they have the same absolute value v 7 a, it follows, that 
they are represented by n equidistant points of a circle with 
radius v 7 ^ as shown in Fig. 22, for n = 4, and in Fig. 23 for 



46 ENGINEERING MATHEMATICS. 

n=9. Such a system of n equal vectors, differing in phase from 
each other by 1/nth of 360 deg., is called a polyphase system, or 
an n-phase system. The n roots of the general number thus 
give an n-phase system. 

33- For instance, v^l = ? 
If A = a (cos a+j sin a ) = 1. this means : a = l , « = 0 ; arid 

hence, 

v l = 0 0 8 - ^ - + ? s i n , 
« J in 

F I G . 22. Roots of a General Number, n= 4. 

and the n roots of the unit are 

S = 0 ^ 1 = 1; 

9 = 1 cos — + ? sin 
n 1 n 

360 . . 360 
- t - i c m * 

9 = 2 
. . „ 360 
? s i n 2 x — ; 

ç = n - l cos ( ra -1) h / s in (ra —1) . 
n n 

However, 
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FIG. 23. Roots of a General Number, n = g. 

If n is divisible by 4, two roots are quadrature numbers, and 

are + ] , for q = j , and - ] , for q = -j. 

34. Using the rectangular coordinate expression of the 
general number, 4 =o i +ja2, the calculation of the roots becomes 

J—• 
more complicated. For instance, given il A =7 

Let C = <ÍJ=ci +jc2; 
then, squaring, 

A = (Cl+jc2)2; 
hence, 

ai + ja2 = (ci 2 - c 2

2 ) +2 /c iC2. 

Since, if two general numbers are equal, their horizontal 
and their vertical components must be equal, it is: 

fli=ci2—c2

2 and a2 = 2c\c2. 

hence, the n roots of 1 are, 

«/T / 360 . . 360\« 
V 1 = I cos t-j sin — I , \ n ' n J ' 

where q may be any integer number. 
One of these roots is real, for 9 = 0, and is = + 1 . 
If n is odd, all the other roots are general, or complex 

numbers. 

If n is an even number, a second root, for q = 2>'s rea^; 

cos 1 8 0 + i sin 180= - 1 . 
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then, c i 2 = i ( V a i 2 + a 2 2 + a i ) , 

and C2 2 = 2 - ( v ' a i 2 + ö 2 2 - a i ) . 

Thus 

C I = j / i { \ / a i 2 + a 2

2 + o7} 

and 

and 

c 2 = / l j V o i 2 + o ! r i - O i l > 

4 I = f / i í v / ^ 2 + ^ 2

2 + a 1 } + ; V ' j ! v / ^ 2 + a ¡ 2 - o i i , 

which is a rather complicated expression. 
35. When representing physical quantities by general 

numbers , t ha t is, complex quantit ies, a t the end of the calcula
tion the final result usually appears also as a general number, 
or as a complex of general numbers, and then has to be reduced 
to the absolute value and the phase angle of the physical quan
t i ty. This is most conveniently done by reducing the general 
numbers to their polar expressions. For instance, if the result 
of the calculation appears in the form, 

by substi tut ing 

P _ ( « i + J « g ) ( & ï +jb2)
3V ci +JC2 

(d1+jd2ne1+je2) ' 

•Vai2 +a2

2; t an a = —. 
d i 

a2 

a 

62 

and so on. 

b = \Zbi2 + b2

2; tan/9 = , 
bi 

^ q(cosa+/s ina)ò 3 (cos/?+;; 's in ,3)3 Vcícos y + / s i n y)* 
d^cos d + j sin <5)2e(cos s +j sin s) 

a ö 3 V c 
•—cos(a+3ß + r/2-2d - »)+/ sin (a+3ß+r/2-2d - e) j . 

Squaring both equations and adding them, gives, 

a , 2 + a 2

2 = ( c i 2 + C 2 2 ) 2 . 

Hence : 

c l 2 + c 2

2 = v o i 2 + 0 2

2 , 

and since ci2 — c 2

2 = a i ; 
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Therefore, the absolute value of a fractional expression is 
the product of the absolute values of the factors of the numer
ator, divided by the product of the absolute values of the 
factors of the denominator. 

The phase angle of a fractional expression is the sum of 
the phase angles of the factors of the numerator, minus the sum 
of the phase angles of the factors of the denominator. 

For instance, 

R ( 3~4 / ) 2 (2 + 2 / ) v / - 2 . 5 + 6/ 

5 ( 4 + 3 / ) 2 v / 2 

25(cos307+/sin307) 22\/2(cos45+/sin45)v'6T5(cosll4+/sinll4)* 
= 125 (cos37+j ' s in37) 2 V2 

=0.4 Vol) j cos ̂ 2 X 307 + 45 + — - 2 X 37^ 

. / 114 
+ j s i n ( 2 x 3 0 7 + 4 5 + — — 2 x 3 7 

= 0.4 VKb \ cos 263 + / sin 263 S 
= 0 .746| - 0 . 122-0 .992 / 1 = -0 . 091 -0 . 74 / . 

36. As will be seen in Chapter I I : 

ifl u3 u* 
£ u = l + W + | ^ - + - ß - + T - j - + . . . 

j j 
X2 X* ofi Xs 

c o S x = l - ^ - + j T - ^ + p - - + . . . 

%^ 

Herefrom follows, by substituting, x = 0, u=jd, 

cos 0 + / sin 6= e'", 

and the polar expression of the complex quantity, 

A = o(cos a + / sin a), 

thus can also be written in the form, 
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dx2 

and is integrated by y = A s Vx, where, 

V=V-2jc2=±(l-j)c; 
hence, 

2/= Aie+a~i)cx + A2e-(l-i)cz. 

This expression, reduced to the polar form, is 
y = Ais+cx(cos ex —j sin ex) +A2e~cx(cos cx+j sin cx). 

where e is the base of the natura l logarithms, 

e = l + l + ^ + | ^ + g + . . .=2 .71828 . . . 

Since any number a can be expressed as a power of any 
other number, one can substi tute, 

a = £ ° \ 

where a0 = logs a = ^ 0 p l ° a and the general number thus can 
logio « 

also be written in the form, 

A=s°'+i"; 

t ha t is the general number, or complex quant i ty , can be expressed 
in the forms, 

A = 0 S i +Jd2 
= a(cos a+j sin a) 
= as'a= £«• ••-»«. 

The last two, or exponential forms, are rarely used, as they 
are less convenient for algebraic operations. They are of 
importance, however, since solutions of differential equations 
frequently appear in this form, and then are reduced to the 
polar or the rectangular form. 

37. For instance, the differential equation of the distribu
tion of alternating current in a flat conductor, or of alternating 
magnetic flux in a flat sheet of iron, has the form: 
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N O T E . I n mathematics, for quadrature unit V— 1 is always 
chosen the symbol i. Since, however, in engineering the symbol i 
is universally used to represent electric current, for the quad
rature unit the symbol j has been chosen, as the letter nearest 
in appearance to i, and / thus is always used in engineering 
calculations to denote the quadrature unit V - l . 

Logarithmation. 

3 8 . In taking the logarithm of a general number, the ex
ponential expression is most convenient, thus : 

loge (ai +j 'a 2) = log c a(cos a +j sin a) 
= logea £ , a 

=log £ a+log £«»* 
= loge a + / a ; 

or, if 6 = base of the logarithm, for instance, 6 = 10, it is: 

logeai + j'a2) = Iog 6 a s»" = log 6 a + ja log 6 £ ; 

or, if b unequal 10, reduced to logio; 

1 t , • X l°gio a . logio £ log 6 ( a i + j a 2 ) = - r

5 — r + j a r 5 — r -logio b 1 logio b 



C H A P T E R IL 

POTENTIAL SERIES AND EXPONENTIAL FUNCTION. 

A. GENERAL. 

3 9 - An expression such as 

y-ih ( 1 ) 

represents a fraction; tha t is, the result of division, and like 
any fraction it can be calculated; t ha t is, the fractional form 
eliminated, by dividing the numerator by the denominator, thus : 

l - x [ l = l + x + x 2 + x 3 + . . . 

1 - x 
+ x 

x—x 2 

+ x 2 

x2-x3 

ix 3 " . 

Hence, the fraction (1) can also be expressed in the form: 

y = j i ^ = l + x + x 2 + x 3 + ( 2 ) 

This is an infinite series of successive powers of x, or a poten
tial series. 

In the same manner, by dividing through, the expression 

y^TTx' ( 3 ) 

can be reduced to the infinite series, 

y = j ~ = l - x + x 2 - r 3 + - (4) 

5 2 
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The infinite series (2) or (4) is another form of representa
tion of the expression (1) or (3), just as the periodic decimal 
fraction is another representation of the common fraction 
(for instance 0.6363 =7 /11) . 

40. As the series contains an infinite number of terms, 
in calculating numerical values from such a series perfect 
exactness can never be reached; since only a finite number of 
terms are calculated, the result can only be an approximation. 
By taking a sufficient number of terms of the series, however, 
the approximation can be made as close as desired; tha t is, 
numerical values may be calculated as exactly as necessary, 
so tha t for engineering purposes the infinite series (2) or (4) 
gives just as exact numerical values as calculation by a finite 
expression (1) or (2), provided a sufficient number of terms 
are used. In most engineering calculations, an exactness of 
0.1 per cent is sufficient; rarely is an exactness of 0.01 per cent 
or even greater required, as the unavoidable variations in the 
nature of the materials used in engineering structures, and the 
accuracy of the measuring instruments impose a limit on the 
exactness of the result. 

For the value a; = 0.5, the expression (1) gives V = ^ _ Q g ~ 2 ; 

while its representation by the series (2) gives 

2/ = l + 0 . 5 + 0 . 2 5 + 0.125+0.0625+0.03125 + . . . (5) 

and the successive approximations of the numerical values of 
y then are : 
using one term: u = I = 1 ; error: —1 

" two terms: y = l-f-0.5 =1.5; " - 0 . 5 
" three terms: « = 1 + 0.5+0.25 =1.75- " -0 .25 
" four terms: « = 1 + 0.5+0.25+0.125 =1.875; " -0.125 
" five terms: u= 1 + 0.5+0.25+0.125+0.0625= 1.9375 " -0.0625 

I t is seen tha t the successive approximations come closer and 
closer to the correct value, y = 2, but in this case always remain 
beiow i t ; t ha t is, the series (2) approaches its limit from below, 
as shown in Fig. 24, in which the successive approximations 
are marked by crosses. 

For the value x = 0.5, the approach of the successive 
approximations to the limit is rather slow, and to get an accuracy 
of 0.1 per cent, tha t is, bring the error down to less than 0.002, 
requires a considerable number of terms. 
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+ 4 5 

+ 3 

2 

+1 " 1-x 

FIG. 24. Convergent Series with One-sided Approach. 

the fourth approximation already brings the error well below 
0.1 per cent, and sufficient accuracy thus is reached for most 
engineering purposes by using four terms of the series. 

4 1 . The expression (3) gives, for 2 = 0.5, the value, 

^ Ï T o 5 = l = a 6 6 6 6 - - -

Represented by series (4), it gives 

7/ = l - 0 . 5 + 0 . 2 5 - 0 . 1 2 5 + 0 . 0 6 2 5 - 0 . 0 3 1 2 5 + - (7) 

the successive approximations are; 

1st: y = l = 1 ; error: + 0 . 3 3 3 . . . 
2d: T / = l - 0 . 5 =0.5; " - 0 . 1 6 6 6 . . . 
3d: j / = l - 0 . 5 + 0 . 2 5 =0.75; " +0 .0833 . . . 
4th; y 1 -0 .5+0 .25-0 .125 =0.625; " -0 .04166 . . . 
5th: y = l - 0 . 5 + 0 . 2 5 - 0 . 1 2 5 + 0 . 0 6 2 5 = 0.6875; " +0.020833. . . 

As seen, the successive approximations of this series come 
closer and closer to the correct value y = 0.6666 . . . , bu t in this 
case are alternately above and below the correct or limiting 
value, tha t is, the series (4) approaches its limit from both sides, 
as shown in Fig. 25, while the series (2) approached the limit 
from below, and still other series may approach their limit 
from above. 

For £ = 0 . 1 the series (2) is 

y = 1 + 0 . 1 +0 .01 +0.001 +0 .0001+ (6) 

and the successive approximations thus are 

l : y = 1; 2:y= 1.1; 3 : y = l . l l ; 4 : ¡ ,= 1.111; 5 : j , = l . l l l l ; 

and as, by (1), the final or limiting value is 
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With such alternating approach of the series to the limit, 
as exhibited by series (4), the limiting or final value is between 
any two successive approximations, that is, the error cf any 
approximation is less than the difference between this and the 
next following approximation. 

Such a series thus is preferable in engineering, as it gives 
information on the maximum possible error, while the series 
with one-sided approach does not do this without special in
vestigation, as the error is greater than the difference between 
successive approximations. 

42. Substituting x=2 into the expressions (1) and (2), 
equation (1) gives 

3 + 

t 
* 1+* 

F I G . 2 5 . Convergent Series with Alternating Approach, 

while the infinite series (2) gives 

i/ = l + 2 + 4 + 8 + 16+32 + . . .; 

and the successive approximations of the latter thus are 

1; 3 ; 7; 15; 31 ; 6 3 . . . ; 
that is, the successive approximations do not approach closer 
and closer to a final value, but, on the contrary, get further and 
further away from each other, and give entirely wrong results. 
They give increasing positive values, which apparently approach 
oo for the entire series, while the correct value of the expression, 
by (1), is i / = - 1 . 

Therefore, for x = 2, the series (2) gives unreasonable results, 
and thus cannot be used for calculating numerical values. 

The same is the case with the representation (4) of the 
expression (3) for x = 2. The expression (3) gives 

1 
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while the infinite series (4) gives 

y = 1 - 2 + 4 - 8 + 1 6 - 3 2 + - . . ., 

and the successive approximations of the la t ter thus are 

hence, while the successive values still are alternately above 
and below the correct or limiting value, they do not approach 
it with increasing closeness, but more and more diverge there
from. 

Such a series, in which the values derived by the calcula
tion of more and more terms do not approach a final value 
closer and closer, is called divergent, while a series is called 
convergent if the successive approximations approach a final 
value with increasing closeness. 

43- While a finite expression, as (1) or (3), holds good for 
all values of x, and numerical values of it can be calculated 
whatever may be the value of the independent variable x, an 
infinite series, as (2) and (4), frequently does not give a finite 
result for every value of x, but only for values within a certain 
range. For instance, in the above series, for — 1 < x < + l , 
the series is convergent; while for values of x outside of this 
range the series is divergent and thus useless. 

When representing an expression by an infinite series, 
it thus is necessary to determine tha t the series is convergent; 
t ha t is, approaches with increasing number of terms a finite 
limiting value, otherwise the series cannot be used. Where 
the series is convergent within a certain range of x, diver
gent outside of this range, it can be used only in the range oj 
convergency, but outside of this range it cannot be used for 
deriving numerical values, but some other form of representa
tion has t o be found which is convergent. 

This can frequently be done, and the expression thus repre
sented by one series in one range and by another series in 

another range. For instance, the expression (1), y= , by 

substituting, x = - , can be written in the form 

+ 3 ; - 5 ; + 1 1 ; - 2 1 ; . . .; 

1 u 
y = + 1+iï 
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and then developed into a series by dividing the numerator 
by the denominator, which gives 

y=u—u2+u3— u4 + . . .; 

or, resubstituting x, 
1 1 1 1 

y = x-x-*+*-* + ---> • • • • (8) 

which is convergent for x = 2, and for z = 2 it gives 

2/ = 0.5 - 0 . 2 5 + 0.125 -0 .0625 + . . . (9) 

With the successive approximations : 

0.5; 0.25; 0.375; 0 .3125. . . , 

which approach the final limiting value, 

t/ = 0 . 3 3 3 . . . 

44- An infinite series can be used only if it is convergent. 
Mathemetical methods exist for determining whether a series 
is convergent or not. For engineering purposes, however, 
these methods usually are unnecessary: for practical use it 
is not sufficient tha t a series be convergent, but it must con
verge so rapidly—that is, the successive terms of the series 
must decrease a t such a great rate—that accurate numerical 
results are derived by the calculation of only a very few terms; 
two or three, or perhaps three or four. This, for instance, 
is the case with the series (2) and (4) for x = 0.1 or less. For 
x = 0.5, the series (2) and (4) are still convergent, as seen in 
(5) and (7), but are useless for most engineering purposes, as 
the successive terms decrease so slowly that a large number 
of terms have to be calculated to get accurate results, and for 
such lengthy calculations there is no time in engineering work. 
If, however, the successive terms of a series decrease at such 
a rapid rate tha t all but the first few terms can be neglected, 
the series is certain to be convergent. 

In a series therefore, in which there is a question whether 
it is convergent or divergent, as for instance the series 

y = l + 2 + 3 + | - + 5 + g + - - - (divergent), 
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or 
, 1 1 1 1 1 t xN 

y = l —2 + 3 - 4 + 5 " 6 +• • • (convergent), 

the mat te r of convergency is of little importance for engineer
ing calculation, as the series is useless in any case; tha t is, does 
not give accurate numerical results with a reasonably moderate 
amount of calculation. 

A series, to be usable for engineering work, must have 
the successive terms decreasing at a very rapid rate, and if 
this is the case, the series is convergent, and the mathematical 
investigations of convergency thus usually becomes unnecessary 
in engineering work. 

45- I t would rarely be advantageous to develop such simple 
expressions as (1) and (3) into infinite series, such as (2) and 
(4), since the calculation of numerical values from (1) and (3) 
is simpler than from the series (2) and (4), even though very 
few terms of the series need to be used. 

The use of the series (2) or (4) instead of the expressions 
(1) and (3) therefore is advantageous only if these series con
verge so rapidly tha t only the first two terms are required 
for numerical calculation, and the third term is negligible; 
t ha t is, for very small values of x. Thus, for re = 0.01, accord
ing to (2), 

y = l +0.01 +0.0001 + . . . = 1 + 0 . 0 1 , 

as the next term, 0.C001, is already less than 0.01 per cent of 
the value of the total expression. 

For very small values of x, therefore, by (1) and (2), 

y=jZ^ = l+x, (10) 
and by (3) and (4), 

j / = r - ^ - = l - x , . . . . . . (11) 
" 1 + x ' • \ / 

ana tnese expressions (10) and (11) are useful and very com
monly used in engineering calculation for simplifying work. 
For instance, if 1 plus or minus a very small quant i ty appears 
as factor in the denominator of an expression, it can be replaced 
by 1 minus or plus the same small quant i ty as factor in the 
numerator of the expression, and inversely... 
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For example, if a direct-current receiving circuit, of resist
ance r, is fed by a supply voltage e0 over a line of low 
resistance r 0 , what is the voltage e at the receiving circuit? 

The total resistance is r + r 0 ; hence, the current, i = - €° 

and the voltage a t the receiving circuit is 
r + r0' 

e = n = e 0 r + r0 

If now r0 is small compared with r, it is 

= e0-
1 + r0 

•=«o 1 Í 2 
r J 

(12) 

(13) 

the erroi 
2 

As the next term of the series would be 

made by the simpler expression (13) is less than (^j . Thus, 

if r0 is 3 per cent of r, which is a fair average in interior light

ing circuits, (^jj = 0 . 0 3 2 = 0.0009, or less than 0.1 p e r cent; 

hence, is usually negligible. 
4 6 . If an expression in its finite form is more complicated 

and thereby less convenient for numerical calculation, as for 
instance if it contains roots, development into an infinite series 
frequently simplifies the calculation. 

Very convenient for development into an infinite series 
of powers or roots, is the binomial theorem, 

( l ± w ) n = l±WM + 
n(n • -11 , , n ( n - l ) ( n - 2 ) 

where 
|w = l X 2 x 3 X . . .Xm. 

(14) 

. Thus, for instance, in an alternating-current circuit of 
resistance r, reactance x, and supply voltage e, the current is, 
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If this circuit is practically non-inductive, as an incandescent 
lighting circuit; t ha t is, if x is small compared with r, (15) 
can be written in the form, 

* - - ™ - 5 K £ ) T * • • • <16> 

and the square root can be developed by the binomial (14), thus , 

U = ( r ) ' n = ~ \ ' a n d g i v e s 

In this series (17), if x = 0.1r or less; t ha t is, the reactance 
is not more than 10 per cent of the resistance, the third te rm, 
3 /x V 
g I —) , is less than 0.01 per cent; hence, negligible, and the 

series is approximated with sufficient exactness by the first 
two terms, 

and equation (16) of the current then gives 

-IG)"} ™ . e %=— r 

This expression is simpler for numerical calculations than 
the expression (15), as it contains no square root. 

47. Development into a series may become necessary, if 
further operations have to be carried out with an expression 
for which the expression is not suited, or a t least not well suited. 
This is often the case where the expression has to be integrated, 
since very few expressions can be integrated. 

Expressions under an integral sign therefore very commonly 
have to be developed into an infinite series to carry out the 
integration. 
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dl = Vdx2+dy2 

\ 
\ 

s . 

xy= a* 

a' 

FIG. 2 6 . Equilateral Hyperbola. 

and from (20), 

a2 , dy a2 

Substituting (22) in (21) gives, 
a"y¡l + (^)*dx; (23) 

hence, the length L of the arc, from x\ to x2 is, 

E X A M P L E 1 . 

Of the equilateral hyperbola (Fip. 26), 

xy = a2 ' . . (20) 

the length L of the arc between xi=2a and £2 = 10a is to be 
calculated. 

An element dl of the arc is the hypothenuse of a right triangle 
with dx and dy as catheter. I t , therefore, is, 
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x 

Substituting - = *<'; t ha t is, d x = a d v , also substi tuting 

V\=— = 2 and v-> = — = 1 0 , 
a a ' 

gives 

The expression under the integral is inconvenient for integra
tion; it is preferably developed into an infinite series, by the 
binomial theorem (14). 

Write u = ~ and n = lr, then 

4 
1_ J _ _ J _ _ 1 5 _ 
v* +2i,-* 8t* + 16v 1 2 128» 1 6 + ' 

and 

L = 0 X l 1 + 2 T ^ 8 T « + Ï 6 V 2 - Î 2 8 ^ + _ - - - r î ; 

r, i i i 
= av\ 1 - „ + -2 X 3 X Î>4 7 X 8 X ^ H X l ö X i r 2 

• 1 , Ì " 

f , » 1 / 1 1 \ 1 / 1 1 \ 
— j + ë fe-^; - 5 6 fe-^j 

J _ / _ 1 
+ 1 7 6 \ » i n Va1 1/ + ' 

and substi tuting the numerical values, 

L = a | ( 1 0 - 2 ) + ^ ( 0 . 1 2 5 - 0 . 0 0 1 ) 

- ¿ ( 0 . 0 0 7 8 - 0 ) + ^ ( 0 . 0 0 0 1 - 0 ) 

= a |8 + 0.0207 - 0.0001} = 8.0206a. 

As seen, in this series, only the first two terms are appreciable 
in value, the third term less than 0.01 per cent of the total , 
and hence negligible, therefore the series converges very 
rapidly, and numerical values can easily be calculated by it. 
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For xi<2 a ; tha t is, Vi < 2 , the series converges less rapidly, 
and becomes divergent for X \ < a ; or, V\<1. Thus this series 
(17) is convergent for v>l, but near this limit of convergency 
it is of no use for engineering calculation, as it does not converge 
with sufficient rapidity, and it becomes suitable for engineering 
calculation only when vj approaches 2. 

E X A M P L E 2. 

48. log 1 = 0 , and, therefore log (1+x) is a small quanti ty 
if x is small, log (1+x) shall therefore be developed in such 
a series of powers of x , which permits its rapid calculation 
without using logarithm tables. 

I t is 

then, substituting (1 + x ) for u gives, 

l o g ( l + s ) = J ^ (24) 

From equation (4) 

1 
= 1 — x + x2—x3 + . 

1+x 

hence, substituted into (24), 

log (l+x)=J(l -x+x2-x3 + . . .)dx 

=fdx —j"xdx +J"x2dx —J'x3dx + . . . 
x2 x3 x4 

= * - 2 + 3 - T + - - - ; ( 2 5 ) 

X2 

hence, if x is very small, — is negligible, and, therefore, all 

terms beyond the first are negligible, thus, 

log (1+x) = x ; 
while, if the second term is still appreciable in value, the more 
complete, but still fairly simple expression can be used, 

x2 ' x\ 
log (l+x)=x-- = x^l-^j 
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If instead of the natural logarithm, as used above, the 
decimal logarithm is required, the following relation may be 
applied: 

logio a = logio£ log £ a = 0.4313 log £ a, 

logio a is expressed by log £ a, and thus (19), (20) (21) assume 
the form, 

^ - 7 + ^ - 4 + • • • ) 

or, approximately, 

logio( l+*)=0.4343:r ; 

or, more accurately, 

logio ( l + x ) = 0 . 4 3 4 3 j ( l - | ) 

B. DIFFERENTIAL EQUATIONS. 

49. The representation by an infinite series is of special 
value in those cases, in which no finite expression of the func
tion is known, as for instance, if the relation between x and y 
is given by a differential equation. 

Differential equations are solved by separating the variables, 
t ha t is, bringing the terms containing the one variable, y, on 
one side of the equation, the terms with the other variable x 
on the other side of the equation, and then separately integrat
ing both sides of the equation. Very rarely, however, is it 
possible to separate the variables in this manner, and where 
it cannot be done, usually no systematic method of solving the 
differential equation exists, but this has to be done by trying 
different functions, until one is found which satisfies the 
equation. 

In electrical engineering, currents and voltages are dealt 
with as functions of time. The current and e.m.f. giving the 
power lost in resistance are related to each other by Ohm's 
law. Current also produces a magnetic field, and this magnetic 
field by its changes generates an e.m.f.—the e.m.f. of self-
inductancc. In this case, e.m.f. is related t o the change of 
current ; t ha t is, the differential coefficient of the current, and 
thus also t o the differential coefficient of e.m.f., since the e.m.f. 
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is related to the current by Ohm's law. In a condenser, the 
current and therefore, by Ohm's law, the e.m.f., depends upon 
and is proportional to the rate of change of the e.m.f. impressed 
upon the condenser; tha t is, it is proportional to the differential 
coefficient of e.m.f. 

Therefore, in circuits having resistance and inductance, 
or resistance and capacity, a relation exists between currents 
and e.m.fs., and their differential coefficients, and in circuits 
having resistance, inductance and capacity, a double relation 
of this kind exists; tha t is, a relation between current or e.m.f. 
and their first and second differential coefficients. 

The most common differential equations of electrical engineer
ing thus a~e the relations between the function and its differential 
coefficient, which in its simplest form is, 

» 
or 

g ~ » < 2 " 

and where the circuit has capacity as wel' as inductance, the 
second differential coefficient also enters, and the relation in 
its simplest form is, 

or 

3 - » . ' < 2 9> 

and the most general form of this most common differential 
equation of electrical engineering then is, 

g + f c g + a ^ - O (30) 

The differential equations (26) and (27) can easily be inte
grated by separating the variables, but not so with equations 
(28), (29) and (30); the latter are preferably solved by trial. 

50. The general method of solution may be illustrated with 
the equation (26) : 

Î-* <26> 
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To determine whether this equation can be integrated by an 
infinite series, choose such an infinite series, and then, by sub
st i tut ing it into equation (26), ascertain whether it satisfies 
the equation (26) ; tha t is, makes the left side equal to the right 
side for every value of x. 

Let, 
y = ao+aiX + a2x2 + asxs + a4X4 + (31) 

be an infinite series, of which the coefficients do, ax, a 2 , a 3 . . . 
are still unknown, and by substi tuting (31) into the differential 
equation (26), determine whether such values of these coefficients 
can be found, which make the series (31) satisfy the equation (26). 

Differentiating (31) gives, 

(^ = ai+2a2x+3a3x2 + 4a4x3 + (32) 
ax 

The differential equation (26) transposed gives, 

g - y - o . . . . . . . . (33) 

Substituting (31) and (32) into (33), and arranging the terms 
in the order of x, gives, 

(ai — ao) + (2a 2 — a\)x + (3a3 — a2)x2 

+ (Aai~a3)x3 + (5a5-a4)xi + . . . = 0 . . (34) 

If then the above series (31) is a solution of the differential 
equation (26), the expression (34) must be an identi ty; tha t is, 
must hold for every value of x. 

If, however, it holds for every value of x, it does so also 
for z = 0, and in this case, all the terms except the first vanish, 
and (34) becomes, 

fli — ck>=0; or, a i = o c . . . . . (35) 

To make (31) a solution of the differential equation (e^ —ao) 
must therefore equal 0. This being the case, the term (ai — ao) 
can be dropped in (34), which then becomes, 

(2a 2 — ai)x + (3a3— a2)x2 + (4.a4—a3)x3 + (5a5— at)x* + . . . = 0 ; 

or, 
a : { ( 2 a 2 - a i ) + ( 3 a 3 - a 2 ) x + . ( 4 a 4 - a 3 ) x 2 + . . . } = 0 . 
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Since this equation must hold for every value of x, the second 
factor of the equation must be zero, since the first factor, x, is 
not necessarily zero. This gives, 

(2o a—«i) +(3a3~a2)x + (4ai— o 3 )x 2 + . . . = 0 . 

As this equation holds for every value of x, it holds also for 
x = 0. In this case, however, all terms except the first vanish, 
and, 

2 0 2 - 0 ! = 0 ; (36) 

hence, 
a\ 

fl2=2' 
and from (35), 

o„ 

Continuing the same reasoning, 

3a 3 —« 2 = 0, 4a4—a3=0, etc. 

Therefore, if an expression of successive powers of x, such as 
(34), is an identity, that is, holds for every value of x, then all 
the coefficients of all the powers of x must separately be zero* 

Hence, 

oi — a 0 = 0 ; or ai = a 0 ; 

2a 2 -

3 a 3 - a 2 = 0; or as = ~-^=^; \ . . . . (37) 

etc., 

«1 a 0 

2 _ "2 

02 Oq 
"3 = lì 

a 0 

4 ~ II 
etc. 

* The reader must realize the difference between an expression (34), as 
equation in x, and as substitution product of a function; that h , as an 
identity. 

Regardless of the values of the coefficients, an expression (34) as equation 
gives a number of separate values of x, the roots of the equation, which 
make the left side of (34) equal zero, that is, solve the equation. If, however, 
the infinite series (31) is a solution of the differential equation (26), then 
the expression (34), which is the result of substituting (31) into (26), must 
be correct not only for a limited number of values of x, which are the roots 
of the equation, but for all values of x, that is, no matter what value is 
chosen for x, the left side of (34) must always give the same result, 0, that 
is, it must not be changed by a change of x, or in other words, it must not 
contain x, hence all the coefficients of the powers of x must be zero. 
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Therefore, if the coefficients of the series (31) are chosen 
by equation (37), this series satisfies the differential equation 
(26); t ha t is, 

-y*2 -»*3 T4 I 
(38) y = a0 

y2 -p3 jçA 
1 + X + 2 + J 3 + J J + . . . 

is the solution of the differential equation, 

dy 

5 1 . In the same manner, the differential equation (27), 

dz 
dx *=az, (39) 

is solved by an infinite series, 

z = aly + aix+a2x2+a3x3+. .., . . . . (40) 

and the coefficients of this series determined by substituting 
(40) into (39), in the same manner as done above. This gives, 

(oi — ooo) + (2n 2 — aa\)x + (3a 3 — aa2)x2 

+ (4a4-aa3)x3 + . . . = 0 , . (41) 

and, as this equation must be an identity, all its coefficients 
must be zero; that is, 

(42) 

or = aao; 
a a 2 

or a2 = ttl2 = a ° 2 ; 

a a3 

or a3 = a 2 - = a ° J 3 ' 

a a* 
or (I4 = 08 J = aorr;; 

etc., etc. 

and the solution of differential equation (39) is, 

a2x2 cPx3 a4x* 
(43). 

52. These solutions, (38) and (43), of the differential equa
tions (26) and (39), are not single solutions, but each contains 
an infinite number of solutions, as it contains an arbitrary 
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constant a 0 ; tha t is, a constant which may have any desired 
numerical value. 

This can easily be seen, since, if z is a solution of the dif
ferential equation, 

dz 
dx = az> 

then, any multiple, or fraction of z, bz, also is a solution of the 
differential equation; 

d(bz) 
- ^ — a f f e ) , 

since the b cancels. 
Such a constant, a0, which is not determined by the coeffi

cients of the mathematical problem, but is left arbitrary, and 
requires for its determinations some further condition in 
addition to the differential equation, is called an integration 
constant. I t usually is determined by some additional require
ments of the physical problem, which the differential equation 
represents; tha t is, by a so-called terminal condition, as, for 
instance, by having the value of y given for some particular 
value of r, usually for x=0, or x = o c . 

The differential equation, 

£->•• («> 

thus, is solved by the function, 

y = a0ijo, (45) 
where, 

ífo = l + * + Y + p í + p r * + - - - . • • • • (46) 

and the differential equation, 

d. 
dx 

is solved by the function, 

z = aoz0, (48) 

where, 
a2x2 a3!3 a*r* , i n . 

2o = l + a r + ^ - + - j 3 — + (49) 

Í. = az, (47) 
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then, 

yo and zo thus are the simplest forms of the solutions y and z 
of the differential equations (26) and (39). 

5 3 . I t is interesting now to determine the value of yn. To 
raise the infinite series (46), which represents y0, to the n t h 
power, would obviously be a very complicated operation. 

However, 

"» 
dy 

and since from (44) ^ = y, (51) 

by substi tuting (51) into (50), 

dvn 

•à-1**- w 
hence, the same equation as (47), but with yn instead of z. 
Hence, if y is the solution of the differential equation, 

dy 
Tx=y' 

then z = yn is the solution of the differential equation (52), 

dz 
-r- = nz. dx 

However, the solution of this differential equation from (47), 
(48), and (49), is 

2 = a o Z n ; 

n2x2 r&x3 

z0 = l+nx.+~l . . ; 

t ha t is, if 

y0 = l+x+~+^ + . . . , 

z0 = y0

n = l+nx+-^-+-p- + . . . ; . . . (531 

therefore the series y is raised to the n th power by multiply
ing the variable x by n. 
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Substituting now in equation (53) for n the value j gives 

i 1 1 1 
y0* = 1 + 1 + 2 + ( 3 + [ T + - •• ; • • • • ( 5 4) 

that is, a constant numerical value. This numerical value 
equals 2.7182818. . . , and is usually represented by the symbol e. 

Therefore, 
i_ 

Vo* = «: 
hence, 

•̂2 g 3 sg4 

2 / o = £ I = l + x + _ + _ + _ + . . . ; (55) 

and 
7l^X^ Tl^X^ Tl^X^ 

Zo = % > " = ( s * ) n = s " I = l + t t £ + - 2 — H—j3—I——f-- . . ; (5G) 

therefore, the infinite series, which integrates above differential 
equation, is an exponential function with the base 

£ = 2.7182818 (57) 

The solution of the differential equation, 

%-* <»> 
thus is, 

y = aQ¿*, (59) 

and the solution of the differential equation, 

%=°y> i 6 f t ) 

is, 
y = a0e°*, (fil) 

where % is an integration constant. 
The exponential function thus is one of the most common 

functions met in electrical engineering problems. 
The above described method of solving a problem, by assum

ing a solution in a form containing a number of unknown 
coefficients, %, ax, a 2 . . . , substituting the solution in the problem 
and thereby determining the coefficients, is called the method 
of indeterminate coefficients. I t is one of the most convenient 
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and most frequently used methods of solving engineering 
problems. 

E X A M P L E 1 . 

54. I n a 4-pole 500-volt 50-kw. direct-current shunt motor, 
t he resistance of the field circuit, inclusive of field rheostat, is 
250 ohms. Each field pole contains 4000 turns, and produces 
a t 500 volts impressed upon the field circuit, 8 megalines of 
magnetic flux per pole. 

Wha t is the equation of the field current, and how much 
t ime after closing the field switch is required for the field cur
rent to reach 90 per cent of its final value? 

Let r be the resistance of the field circuit, L the inductance 
of the field circuit, and i the field current, then the voltage 
consumed in resistance is, 

er = ri. 

In general, in an electric circuit, the current produces a 
magnetic field; tha t is, lines of magnetic flux surrounding the 
conductor of the current; or, it is usually expressed, interlinked 
with the current. This magnetic field changes with a change of 
the current, and usually is proportional thereto. A change 
of the magnetic field surrounding a conductor, however, gen
erates an e.m.f. in the conductor, and this e.m.f. is proportional 
to the rate of change of the magnetic field; hence, is pro
portional to the rate of change of the current, or to 
di 
—, with a proportionality factor L, which is called the induct-
Ctí 

ance of the circuit. This counter-generated e.m.f. is in oppo-
di 

sition t o t h e current, —L-^, and thus consumes an e.m.f., 

di 
+ L-T-, which is called the e.m.f. consumed by self-inductance, 

at 
or inductance e.m.f. 

Therefore, by the inductance, L, of the field circuit, a voltage 
is consumed which is proportional to the rate of change of the 
field current, thus , 

T di 
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Since the supply voltage, and thus the total voltage consumed 
in the field circuit, is e = 500 volts, 

. Tdi 
e = n + L M > W 

or, rearranged, 

di e—ri 
It= L ' 

Substituting herein, 

u^e-ri; (63) 

hence, 

du di 

gives, 

dt ~~L 

dt r'dt' 

du r 
- t v (64) 

r 
This is the same differential equation as (39), with a = — 

L 

and therefore is integrated by the function, 

M = ao£ L ; 

therefore, resubstituting from (63), 

e—ri = ooe L , 

and 
i - ì - ^ - ì 1 (65) 

r r v 

This solution (65), still contains the unknown quanti ty a 0 ; 
or, the integration constant, and this is determined by know
ing the current i for some particular value of the time t. 

Before closing the field switch and thereby impressing the 
voltage on the field, the field current obviously is zero. In the 
moment of closing the field switch, the current thus is still 
zero; t ha t is, 

)'=0 for <=0. (66> 
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Substituting these values in (65) gives, 

or ao = +e, 

hence, 

(67) 

is the final solution of the differential equation (62); .ha t is, 
it is the value of the field current, i, as function of the time, £, 
after closing the field switch. 

After infinite time, t = oo, the current i assumes the final 
value to, which is given by substituting ( = o o into equation 
(67), thus , 

hence, by substi tut ing (68) into (67), this equation can also be 
written, 

where io = 2 is the final value assumed by the field current. 
The time ii, after which the field current i has reached 90 

per cent of its final value i0, is given by substituting i = 0.9i0 

into (69), thus , 

. e 500 „ 
Î O = - = 257j = 2 amperes; (68) 

(69) 

0.9 ?:o = i 0 ( l - c 
and 

r 
0.1. 

Taking the logarithm of both sides, 

and 

(70) 
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55 . The inductance L is calculated from the da ta given 
in the problem. Inductance is measured by the number of 
interlinkages of the electric circuit, with the magnetic flux 
produced by one absolute unit of current in the circuit; tha t 
is, it equals the product of magnetic flux and number of turns 
divided by the absolute current. 

A current of i0=2 amperes represents 0.2 absolute units, 
since the absolute unit of current is 10 amperes. The number 
of field turns per pole is 4000; hence, the total number of turns 
n = 4 x 4 0 0 0 = 16,000. The magnetic flux a t full excitation, 
or i0=0.2 absolute units of current, is given as 0 = 8 x l O 6 lines 
of magnetic force. The inductance of the field thus is : 

T n<P 16000X8X10 6

 t n „,„ , , . 
L = — = 77— = 640X1C 9 absolute units = 640*, 

? 0 0.2 

the practical unit of inductance, or the henry (h) being 10 9 

absolute units. 
Substituting L = 640 r = 250 and e = 500, into equation (67) 

and (70) gives 

i = 2 ( l - £ - 0 ' 3 9 ' ) , 

and 

^ - S S ü O T - 5 - 8 8 8 " ( 7 1 ) 

Therefore it takes about 6 see. before the motor field has 
reached 90 per cent of its final value. 

The reader is advised to calculate and plot the numerical 
values of i from equation (71), for 
¿ = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3, 4, 5, 6, 8, 10 sec. 

This calculation is best made in the form of a table, thus; 

and, 

hence, 

and, 

£ - 0 - 3 9 i = A'-0.39« l o g , , 

logs =0.4343; 

0.39« log, = 0.1694«; 

£~ 0 3 9 í = tf-0.1694í. 
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The values of £ - ° - 3 9 t can also be taken directly from the 
tables of the exponential function, at the end of the book. 

( 0.16941 —0.16941 
j - 0 . 3 9 1 

— •¡V-0.16941 

, . - 0 . 3 9 Í 

2 ( 1 - £ - - 3 9 1 , 

0.0 0 0 1 0 0 
0.1 0.0170 0.9830-1 0.962 0.038 0.076 
0.2 0.0339 0.9661-1 0.925 0.075 0.150 
0.4 0.0678 0.9322-1 0.855 0.145 0.290 
0.Ô 0.1016 0.8984-1 0.791 0.209 ' 0.418 
0.8 0.1355 0.8645-1 0.732 0.268 0.536 
etc. etc. etc. 

EXAMPLE 2. 

56. A condenser of 20 mf. capacity, is charged to a potential 
of e 0 = 10,000 volts, and then discharges through a resistance 
of 2 megohms. What is the equation of the discharge current, 

and after how long a t ime has 
the voltage a t the condenser 
dropped to 0.1 its initial value? 

A condenser acts as a reser
voir of electric energy, similar 
to a t ank as water reservoir. 
If in a water tank , Fig. 27, A 
is the sectional area of the tank, 
e, the height of water, or water 
pressure, and water flows out 
of the tank, then the height e 
decreases by the flow of water ; 
t ha t is the t ank empties, and 

the current of water, i, is proportional to the change of the 
de 

water level or height of water, —, and to t h e area A of the 

t ank ; tha t is, it is, 

FIG. 27 . Water Reservoir. 

. de 
% — A ï ï ' 

(72) 

The minus sign stands on the right-hand side, as for positive 
t ; that is, out-flow, the height of the water decreases; that is, 
de is negative. 
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. e 

and thus 

J at r' 
and 

de 
at Cre' 

Therefore, from (60) (61), 

e = a 0£ cr, 

and for i = 0, e = e 0 = 10,000 - o h V hence 

10,000 = o 0 , 
and 

= 1 0 , 0 0 0 £ - n 0 2 S ( volts; . . . (74) 
0.1 of the initial value: 

e = 0.1e 0, 
Is reached at : 

/ l = _ ^ l - = 92sec (75) 
log £ 

In an electric reservoir, the electric pressure or voltage e 
corresponds to the water pressure or height of the water, and 
to the storage capacity or sectional area A of the water tank 
corresponds the electric storage capacity of the condenser, 
called capacity C. The current or flow out of an electric 
condenser, thus is, 

de 
i=-C~. (73) 

The capacity of condenser is, 

C = 20 mf = 20 X 1 0 - « farads. 

The resistance of the discharge path is, 

r = 2 X l 0 6 ohms; 

hence, the current taken by the resistance, r, is 
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The reader is advised to calculate and plot the numerical 
values of e, from equation (74), for 

¿ = 0; 2; 4; 6; 8; 10; 15; 20; 30; 40; GO; 80; 100; 150; 200sec. 

57. .Wherever in an electric circuit, in addition to resistance, 
inductance and capacity both occur, the relations between 
currents and voltages lead to an equation containing the second 
differential coefficient, as discussed above-. 

The simplest form of such equation is : 

d2y 
d ¿ = a y ( 7 6 ) 

To integrate this by the method of indeterminate coefficients, 
we assume as solution of the equation (76) the infinite series, 

y = a0+aix+a2X2+a-iX3+aix
4 + (77) 

in which the coefficients ao, a\, a?, a 3 , a 4 . . . are indeterminate. 
Differentiating (77) twice, gives 

§ = 2 a 2 + 2 x 3 a 3 x + 3 X 4 a 4 z
2 + 4 x 5 a 5 . r 3 + . . • , . (78) 

and substituting (77) and (78) into (76) gives the identi ty, 

2 a 2 + 2 x 3 a 3 x + 3 x 4 a 4 x 2 + 4 X 5 a s x 3 + . . . 

= a ( a o + a i X + a 2 i 2 + a 3 x 3 + . . . ) ; 

or, arranged in order of x, 

(2a 2—aao) + x(2 X 3 a 3 - a a 0 + x 2 ( 3 x 4 a 4 - a a 2 ) 

+ x 3 ( 4 x 5 a 5 - a a 3 ) + . . . = 0 (79) 

Since this equation (79) is an identity, the coefficients of 
all powers of x must individually equal zero. This gives for 
the determination of these hitherto indeterminate coefficients 
the equations, 

2a 2 —aao = 0; 

2 x 3 a 3 - a a i = 0 ; 

3 X 4 a 4 — a a 2 = 0; 

4 X 5as — a a 3 = 0, etc. 
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Therefore 

a 2 = 

a 4 = 

a6-

o 8 = 

aan 

o« 2 a0a
¿ 

3 x 4 |4 

0 0 4 OOO* 

' 5 X 6 |6 ' 

0 0 6 a 0 o
4 

7 X 8 |S ' 

etc., 

Substituting these values in (77), 

a 3 = 

a 5 = 

a 7 = 

a 9 = 

a«i 

T 
aar, aia2 

4 X 5 = ~J1T; 

oa 5 a ia 3 

6 X 7 = ~ [ T ; 

aa 7 a ia 4 

8 X 9 = - J 9 ~ ; 

etc. 

„ ax' 

ax3 a2x5 a3x7 

+ a i t x + j 3 - + l T + X + -
(80) 

In this case, two coefficients ao and O I thus remain inde
terminate, as was to be expected, as a differential equation 
of second order must have two integration constants in its 
most general form of solution. 

Substituting into this equation, 

tha t is, 

6 2 = o: 

b = Va, 

« 3 = + b 2 y ' 

(81) 

C82Ì 

and 
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y-A 
b*x2 Fx3 Vx* 

„ f , T 6% 2 b3x? Vx* 
+ S { l - ò x + - ] 2 - - 1 3 - + - — + . (84) 

The first series, however, from (56), for n = b is e + t o , and 
the second series from (56), for n= —b is s _ t e . 

Therefore, the infinite series (83) is, 

y = Ae+bx+Be-bx; (85) 

tha t is, it is the sum of two exponential functions, the one with 
a positive, the other with a negative exponent. 

Hence, the differential equation, 

s Ê - f l * ( 7 6 ) 

is integrated by the function, 

y = Ae+bx+Be-bx, .(86) 
where, 

6 = Va. (87) 

However, if a is a negative quant i ty , b=Va is imaginary, 
and can be represented by 

b = jc, (88) 
where 

c 2 = - o (89) 

In this case, equation (86) assumes the form, 

y = Ae+'cx+Be"icx; (90) 

In this case, instead of the integration constants ao and Oi, 
the two new integration constants A and B can be introduced 
by the equations 

fli 
Oq=A+B and -¡-=A—B; 

o 
h e n c e > Oi a i 

a ° + T a ° _ T 

¿ = _ _ and # = — 2 — , 

and, substi tuting these into equat ion (83), gives, 
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tha t is, if in the differential equation (76) a is a positive quantity, 
= + 6 2 , this differential equation is integrated by the sum of 
the two exponential functions (86) ; if, however, o is a negative 
quantity, = — c 2, the solution (86) appears in the form of exponen
tial functions with imaginary exponents (90). 

58. In the latter case, a form of the solution of differential 
equation (76) can be derived which does not contain the 
imaginary appearance, by turning back to equation (80), and 
substituting therein a=—c2, which gives, 

dx2' 
-c2y (91) 

, <?x2 c^x* cPx6 

y=a0\i—2-+-¡r"¡(T + -

Oí 
c 

c 'x 3 

15 + - - - J ' 

or, writing A = a0 and B = 
ai 

y=A 
C2X2 C*X* C 6 ! 6 

2 ~ + ~ j T ¡6~ + ~ " ' 

+ B 
Ä 3

 C5!5 

cx—nr + n — + . (92) 

The solution then is given by the sum of two infinite series, 
thus, 

, , , c2x2 ax* A 6 

u(cx) = i - ~ + - r r -
and 

• + - . 

v(cx)=cx pj- H—r¿ 

(93) 

as 
y = Au(cx) +Bv(cx). (94) 

In the w-series, a change of the sign of x does not change 

the value of u, 

u(—cx)=u( + cx) (95) 

Such a function is called an even function. 
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In the r-scries, a change of the sign of x reverses the sign 
of V, as seen from (93): 

v(-cx) = -v(+cx). . . . . . . (96) 

Such a function is called an odd function. 
I t can be shown that 

u(ex) =cos cx and v(cx) = sin cx; . . . (97) 

hence, 

y = A cos cx+B sin cx, (98) 

where A and B are the integration constants, which are to be 

determined by the terminal conditions of the physical problem. 

Therefore, the solution of the differential equation 

has two different forms, an exponential and a trigonometric. 
If a is positive , 

¿ = + ^ (100) 

it is : 

y = At+bx+Be-bx, (101) 

If a is negative, 

%=-c2y, (102) 

it is: 

y = A cos cx+B sin cx (103) 

In the latter case, the solution (101) would appear as ex
ponential function with imaginary exponents ; 

y=Ae+'cx+Be-'c* (104) 

As (104) obviously must be the same function as (103), it 
follows tha t exponential functions with imaginary exponents 
must be expressible by trigonometric functions. 
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5 9 . The exponential functions and the trigonometric func
tions, according to the preceding discussion, are expressed by 
the infinite series, 

X 5 

-j-2 -j>4 ^r6 

cos t = 1— — +r j—ttt + —. . . 
|4 [6 

1 ' ' 

sill X = X — r r + r r — TV + —• • • 
£ Ë IL 

Therefore, substituting ju for x, 

(105) 

U , U It . LI U, . (I 

/ M2 M4 M6 \ . / U3 U5 U7 \ 

- ( l - 2 + | 4 - i !
 + - • - ) + I ( t t " I + ^ T L + " - • I 

However, the first part of this series is cos u, the latter part 
sin u, by (105); tha t is, 

£'" = cos u+jsin u. 

Substituting — w for +11 gives, 

e~'u =cos m — y sin w. 

Combining (106) and (107) gives, 

cos U--

and 
- + JU _ 

sin w = -

Substituting in (106) to (108), /y for m, gives, 

s~~" = cos jv+jsm jv, 

s + v = cos jv— / s i n p ! 
and, 

(106) 

(107) 

(108) 

(109) 
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Adding and subtracting gives respectively, 

cos jv = , 

(110) 

By these equations, (106) to (110), exponential functions 
with imaginary exponents can be transformed into trigono
metric functions with real angles, and exponential funct ion 
with real exponents into trignometric functions with imaginary 
angles, and inversely. 

Mathematically, the trigonometric functions thus do not 
constitute a separate class of functions, but may be considered 
as exponential functions with imaginary angles, and it can be 
said broadly tha t the solution of the above differential equa
tions is given by the exponential function, but t h a t in this 
function the exponent may be real, or may be imaginary, and 
in the latter case, the expression is put into real form by intro
ducing the trigonometric functions. 

6o. A condenser (as an underground high-potential cable) 
of 20 mf. capacity, and of a voltage of e 0 = 10,000, discharges 
through an inductance of 50 mh. and of negligible resistance) 
What is the equation of the discharge current? 

The current consumed by a condenser of capacity C and 
potential difference e is proportional to the rate of change 
of the potential difference, and to the capacity; hence, it is 

de 

C —, and the current from the condenser; or its discharge 

current, is 

The voltage consumed by an inductance L is proportional 
t o the rate of change of the current in the inductance, and to the 
inductance; hence, 

E X A M P L E 1 . 

(112) 
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de d2i 

aC aT2' 

„jdH d2i 1 . 
l = - C L W or> tf~—cV> • • • ( 1 1 3 ) 

Differentiating (112) gives, 

and substituting this into (111) gives, 

„T(Pi d2i 

as the differential equation of the problem. 

This equation (113) is the same as (102), for C 2 " 7 J ¿ > thus 

is solved by the expression, 

i = A cos —=+B s i n — = - , . . . (114) 
VLC VLC 

and the potential difference at the condenser or at the inductance 
is, by substituting (114) into (112), 

ß c o s — L r - A s i n — = 1 . . (115) 
VLC V i x ' J 

These equations (114) and (115) still contain two unknown 
constants, A and B, which have to be determined by the terminal 
conditions, tha t is, by the known conditions of current and 
voltage a t some particular time. 

At the moment of starting the discharge; or, at the time 
< = 0, the current is zero, and the voltage is that to which the 
condenser is charged, tha t is, i = 0, and e = e0. 

Substituting these values in equations (114) and (115) 
gives, 

0 = A and e0=^j^-B; 

hence 

B = P 
and, substituting for A and B the values in (114) and (.115), 
gives 

IC . t_ 

V 
and 

I 
e=e0 cos VCL 

(116) 
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Substituting the numerical values, e0 = 10,000 volts, C = 20 
m f . = 2 0 X l O - 8 farads, L = 50 mh .=0 .05h . gives, 

4 ^ = 0.02 and VcL = 10~3; 

hence, 
i = 200 sin 1000 t and e = 10,000 cos 1000 t. 

61 . The discharge thus is alternating. In reality, due to 
the unavoidable resistance in the discharge path , the alterna
tions gradually die out, t ha t is, the discharge is oscillating. 

The time of one complete period is given by, 

1000« 0=2;r; or, t 0 = ^ . 

Hence the frenquency, 

, 1 1 0 0 0 „ „ 
/ = T - = ~r;— = 159 cycles per second. 

' 0 

As the circuit in addition to the inductance necessarily 
contains resistance r, besides the voltage consumed by the 
inductance by equation (112), voltage is consumed by the 
resistance, thus 

«r = « , (117) 

and the tota l voltage consumed by resistance r and inductance 
L, thus is 

. T di 
e = ri + L- U18 

at • ' 
Differentiating (118) gives, 

de di T d2i 
i r r d t + L w > r i l 9 > 

and, substi tuting this into equation (111), gives, 

. _ di „T d2i „ 
l + C r d t + C L r ° ' (120) 

as the differential equation of the problem. 

This differential equation is of the more general form, (30), 
62. The more general differential equation (30). 

2 + 2 ^ + ^ + 6 = 0, (121) 
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can, by substituting, 

y+\=*, (122) 

which gives 
dy _ dz 
dx dx' 

be transformed into the somewhat simpler form, 

o S + 4 > = ° ( i 2 3> 
I t may also be solved by the method of indeterminate 

coefficients, by substituting for z an infinite series of powers of 
x, and determining thereby the coefficients of the series. 

As, however, the simpler forms of this equation were solved 
by exponential functions, the applicability of the exponential 
functions to this equation (123) may be directly tried, by the 
method of indeterminate coefficients. That is, assume as solu
tion an exponential function, 

z = Aebx, (124) 

where A and b are unknown constants. Substituting (124) 
into (123), if such values of A and b can be found, which make 
the substitution product an identity, (124) is a solution of 
the differential equation (123). 

From (124) it follows that , 

^- = bAeh*; and d^-=b2Aebx, . . . (\2& 
dx dx2 

and substituting (124) and (125) into (123), gives, 

Asbx\b2 + 2cb+a\ = 0 (120) 

As seen, this equation is satisfied for every value of x, tha t 
is, it is an identity, if the parenthesis is zero, thus, 

b2+2cb+a = 0, (127) 

and the value of b, calculated by the quadratic equation (127). 
thus makes (124) a solution of (123), and leaves A still undeter
mined, as integration constant. 
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From (127), 

ò = — c ± V e 2 —a; 

or, substituting, 

Vc2-a = p, (128) 

into (128), the equation becomes, 

b=-c±p (129) 

Hence, two values of 6 exist, 

bi = — c + p and fe2=— c— p, 

and, therefore, the differential equation, 

is solved by Ashix; or, by Asb,x, or, by any combination of 
these two solutions. The most general solution is, 

z = A1e
b'x + A2e

blx; 

tha t is, 

a 

[ A 1 £ + ' , : C + 4 2 i ~ P I i - - . 

(131) 

As roots of a quadratic equation, òi and 6 2 may both be 
real quantities, or may be complex imaginary, and in the 
lat ter case, the solution (131) appears in imaginary form, and 
has to be reduced or modified for use, so as to eliminate the 
imaginary appearance, by the relations (106) and (107). 

EXAMPLE 2. 

6 3 . Assume, in the example in paragraph 60, the discharge 
circuit of the condenser of C = 20 mf. capacity, to contain, 
besides the inductance, L = 0.05 h, the resistance, r = 1 2 5 ohms. 

The general equation of the problem, (120), dividing by 
C L, becomes, 

dH r di i . 
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This is the equation (123), for: 

x = t, 2c = -£ = 2500; 

z = i. CL 
A O 6 

i f p=Vc2—a, t h e n 

and, writing 

and since 

2L 

_ i r i 

~2LY~4C' 

= 10 and ^- = 2500, 

s = 75 and p = 750. 

The equation of the current from (131) then is, 

t = Aii + Aii 

T ! S S 1 
= T 2 ¿ [Aie m + A2! u \. 

(133) 

(134) 

(135) 

(136) 

(137) 

This equation still contains two unknown quantities, the inte
gration constants Ax and A 2 , which are determined by the 
terminal condition: The values of current and of voltage a t the 
beginning of the discharge, or i = 0. 

This requires the determination of the equation of the 
voltage a t the condenser terminals. This obviously is the voltage 
consumed by resistance and inductance, and is expressed by 
equation (118), 

rdi 
e=ri + L 

ut' 
(118) 
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e = r{ Ais 2 L +A2c
 2 L T f r—s , -—t r + s , -

r + s +JLt r—s -J-t 
—Axtv< + —A2s

 2 i (138) 

and, substi tuting the numerical values (133) and (136) into 

equations (137) and (138), gives 

.(139) 

i = AxC s o o ' + ^ 2 £ - 2 o o o < 

and, 

e = 1 0 0 . 4 1 r 5 , , O i + 2 5 A 2 £ - 2 0 0 1 

At the moment of the beginning of the discharge, t = 0, 
the current is zero and the voltage is 10,000; tha t is, 

¿ = 0; ¿ = 0; e = 10,000 (140) 

Substituting (140) into (139) gives, 

0 = Ai+A2, 10,000 = 100^1+25 .4 2 ; 

hence, 

A 2 = - A i ; A i=133 .3 ; . 4 2 = - 1 3 3 . 3 . . . (141) 

Therefore, the current and voltage are, 

t = 133.31 £ - 5 O O < _ £ - 2 0 O O Í ! i j 
e = 1 3 , 3 3 3 £ - 5 O O í - 3 3 3 3 £ - 2 0 O O Í j 

• (142) 

The reader is advised to calculate and plot the numerical 
values of i and e, and of their two components, for, 

< = 0, 0.2, 0.4, 0.6, 1, 1.2, 1.5, 2, 2.5, 3, 4, 5, O x l O " 3 sec. 

di 

hence, substi tuting herein the value of i and ^ , from equation 

(137), gives 
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6 4 . Assuming, however, tha t the resistance of the discharge 
circuit is only r = 80 ohms (instead of 125 ohms, as assumed 
above) : 

4L . 
T Q m equation (134) then becomes —3600, and there

fore: 
s = V - 3 6 0 0 = 6 0 V - l = 60/, 

and 
P = ¿ = 600/. 

The equation of the current (137) thus appears in imaginary 
form, 

i ^ - s o o f j ^ + e o o i f + ^ - e o o j f j _ _ _ ( 1 4 3 ) 

The same is also true of the equation of voltage. 
As it is obvious, however, physically, tha t a real current 

must be coexistent with a real e.m.f., it follows that this 
imaginary form of the expression of current and voltage is only 
apparent, and tha t in reality, by substituting for the exponential 
functions with imaginary exponents their trigononetric expres
sions, the imaginary terms must eliminate, and the equation 
(143) appear in real form. 

According to equations (106) and (107), 

£ + 6 O O J Í = c o s 600 /+ / s i n 600«; 1 
(144) 

£ - 6 0 0 " = cos 6 0 0 Í - / sin 600/. J 

Substituting (144) into (143) gives, 

i = £ - 8 0 0 ' j ß i cos 6 0 0 i + ß 2 s i n 600¿!, . . (145) 
where B\ and B2 are combinations of the previous integration 
constants A\ and A 2 thus, 

Bl = Al+A2, and B2 = j(A1-A2). . . (146) 

By substituting the numerical values, the condenser e.m.f., 
given by equation (138), then becomes, 

e = e - 8 o o < | (40 +30/) A i (cos 600/ + / sin 600Z) 

+ (40 - 30/)A 2(cos 6 0 0 í - / s i n 600í) I 
= £ - 8 0 0 ' l (40Pu +305 2 ) cos 600i + ( 4 0 ß 2 - 3 0 ß 0 sin 600í¡. (147) 
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Since for i = 0 , i = 0 and e = 10 ,000 volts (140), substi tuting 
into (145) and (147), 

0 = J3i and 10,000 = 40 ß i + 3 0 B2. 

Therefore, 5 1 = 0 and 5 2 = 333 and, by (145) and (147), 

?; = 333¡ r - 8 0 0 ' s i n 600 t; } 
• • (148) 

e = 1 0 , 0 0 0 ^ 8 0 0 ' (cos 600 í + 1.33 sin 6000 .J 

As seen, in this case the current i is larger, and current 
and e.m.f. are the product of an exponential term (gradually 
decreasing value) and a trigonometric term (alternating value) ; 
t ha t is, they consist of successive alternations of gradually 
decreasing amplitude. Such functions are called oscillating 
functions. Practically all disturbances in electric circuits 
consist of such oscillating currents and voltages. 

600i = 2k gives, as the t ime of one complete period, 

T = - | ^ = 0.0105 sec -
OÜ0 ' 

and the frequency is 

/ = ^ 7 = 95.3 cycles per sec. 

In this particular case, as the resistance is relatively high, 
the oscillations die out rather rapidly. 

The reader is advised to calculate and plot the numerical 
values of i and e, and of their exponential terms, for every 30 

T T T 
degrees, t ha t is, for t = 0, y^, 3 JTJ, etc., for the first two 

periods, and also to derive the equations, and calculate and plot 
the numerical values, for the same capacity, C = 20 mf., and 
same inductance, L = 0.05A, but for the much lower resistance, 
r = 20 ohms. 

65. Tables of e+x and e - x , for 5 decimals, and tables of 
log s + x and log e ~ x , for 6 decimals, are given at the end of 
the book, and also a table of e~x for 3 decimals. For most 
engineering purposes the latter is sufficient; where a higher 
accuracy is required, the 5 decimal table may be used, and for 
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highest accuracy interpolation by the logarithmic table may be 
employed. For instance, 

log £ - 1 0 =5.657055, 
log «-» =8.697117, 
log =9.739423, 
log e " 0 0 8 =9.965256, 
log £ - o . o o 4 7 = 9.997959, 

r interpolated, 
\ between log £-° 0 0 4 =9.998263, 
I and log £ " 0 0 0 5 =9.997829) 

log e " 1 3 6 8 4 7 = 4.056810 =0 .056810-6 . 

From common logarithmic tables, 

N O T E . I n mathematics, for the base of the natural loga
rithms, 2.718282 . . . , is usually chosen the symbol e. Since, 
however, in engineering the symbol e is universally used to 
represent voltage, for the base of natural logarithms has been 
chosen the symbol e, as the Greek letter corresponding to e, 
and £ is generally used in electrical engineering calculations in 
this meaning. 

13.6847 _ f 

From the logarithmic table, 

£ - 1 3 6 8 4 7 = 1.13976 X 1 0 - 6 . 



CHAPTER I I I . 

TRIGONOMETRIC SERIES. 

A. TRIGONOMETRIC FUNCTIONS. 

66. For the engineer, and especially the electrical engineer, 
a perfect familiarity with the trigonometric functions and 
trigonometric formulas is almost as essential as familiarity with 
the multiplication table. To use trigonometric methods 
efficiently, it is not sufficient to understand trigonometric 
formulas enough to be able to look them up when required, 
but they must be learned by heart , and in both directions ; t ha t 
is, an expression similar to the left side of a trigonometric for
mula must immediately recall the right side, and an expression 
similar to the right side must immediately recall the left side 
of the formula. 

Trigonometric functions are defined on the circle, and on 
the right triangle. 

Let in the circle, Fig. 28, the direction to the right and 
upward be considered as positive, to the left and downward as 
negative, and the angle a be counted from the positive hori
zontal OA, counterclockwise as positive, clockwise as negative. 

The projector s of the angle a, divided by the radius, is 
called sin a; the projection c of the angle a, divided by the 
radius, is called cos a. 

The intercept t on the vertical tangent at the origin A, 
divided by the radius, is called tan a ; the intercept ct on the» 
horizontal tangent at B, or 90 deg., behind A, divided by the 
radius, is called cot a. 

Thus, in Fig. 28, 
S c 

s i n a = - ; c o s a = - ; 
r r 

t an a = -; cot a = —. r r 
94 
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In the right triangle, Fig. 29, with the angles a and ß, 
opposite respectively to the cathetes a and 6, and with the 
hypotenuse c, the trigonometric functions a re : 

. o . „ b 
s m a = cosa = — ; c o s a = s m S = — c r c 

t an a = cot ß = T - ; cot a = t a n ß = — . 
r b a 

(2) 

By the right triangle, only functions of angles up to 90 deg., 

or - , can be defined, while by the circle the trigonometric 

functions of any angle are given. Both representations thus 
must be so familiar to the engineer that he can see the trigo

nometric functions and their variations with a change of the 
angle, and in most cases their numerical values, from the 
mental picture of the diagram. 

67. Signs of Functions. In the first quadrant, Fig. 28, all 
trigonometric functions are positive. 

In the second quadrant, Fig. SO, the sin a is still positive, 
as s is in the upward direction, but cos a is negative, since c 
is toward the left, and tan a and cot a also are negative, as / 
is downward, and ct toward the left. 

In the third quadrant, Fig. 31, sin a and cos a are both 
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negative: « being downward, c toward the left; but tan a and 
cot a are again positive, as seen from t and ct in Fig. 31. 

FIG. 30. Second Quadrant. F I G . 31. Third Quadrant. 

In the fourth quadrant , Fig. 32, sin a is negative, as s is 
downward, but cos a is again positive, as c is toward the right ; 

t an a and cot « are both 
negative, as seen from f and 
ct in Fig. 32. 

In the fifth quadrant all 
the trigonometric functions 
again have the same values 
as in the first quadrant , Fig. 
28, t h a t is, 360 deg., or 2r , 
or a multiple thereof, can be 
added to , or subtracted from 
the angle a, without changing 
the trigonometric functions, 
but these functions repeat 
after every 360 deg., or 2%; 

F I G . 32. Fourth Quadrant. 

t ha t is, have 2tz or 360 deg. as their period. 

SIGNS O F F U N C T I O N S 

FUNCTION. POSITIVE. NEGATIVE. 

sin a 
cos a 
tan « 
cot a 

1st and 2d 
1st and 4th 
1st and 3d 
1st and 3d 

3d and 4th quadrant 
2d and 3d 
2d and 4th 
2d and 4th 
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68. Relations between sin a and cos a. Between sin a and 
cos a the relation, 

sin 2 a + C 0 S 2 a = 1, 
exists; hence, 

sin a = Vi cos 2 a; 

cos a — sin 2 a. 

(4) 

(4a) 

Equation (4) is one of those which is frequently used in 
both directions. For instance, 1 may be substituted for the 
sum of the squares of sin a and cos a, while in other cases 
sin 2 a -feos 2 a may be substituted for 1. For instance, 

sin 2 a + c o s 2 « / s i n a \ 2 , , „ 
+ l = t a n 2 « + l . 

cos al cos 2 a cos 2 a 

Relations between Sines and Tangents 

hence 

tan « = 

cot a = 

cot a = 

tan a = 

sin a 
cos a ' 

COS a 
sin a ' 

1 
t an a ' 

1 
cot « ' 

(5) 

(5a) 

As tan a and cot a are far less convenient for trigonometric 
calculations than sin a and cos a, and therefore are less fre
quently applied in trigonometric calculations, it is not neces
sary to memorize the trigonometric formulas pertaining to 
tan « and cot a, but where these functions occur, sin « and 
and cos a are substituted for them by equations (5), and the 
calculations carried out with the latter functions, and tan a 
or cot a resubstituted in the final result, if the latter contains 
sin a ., . . 

, or its reciprocal. 
cos a 

In electrical engineering tan a or cot a frequently appears 
as the starting-point of calculation of ' the phase of alternating 
currents. For instance, if a is the phase angle of a vector 
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quanti ty, t an a is given as the ratio of the vertical component 
over the horizontal component, or of the reactive component 
over the power component. 

In this case, if 
a 

t an a = T - , 
o 

or, if 

sin a == , , and cos « = — = = • : . (56) 
Vtf + b2 Va2 + b2 

cot A = -R, a 

sin a = ,-—==-, and cos a= ,Ji^=. . . (5c) 
Vc2 + d2 Vc2 + d2 

The secant functions, and versed sine functions are so 
little used in engineering, tha t they are of interest only as 
curiosities. They are defined by the following equations: 

1 
sec a -- cos a 

1 
cosec a = , 

sin a 

sin vers a = 1 — sin a, 

cos vers a = 1 — cos a. 
6g. Negative Angles. From the circle diagram of the 

trigonometric functions follows, as shown in Fig. 33, tha t when 
changing from a positive angle, t h a t is, counterclockwise 
rotation, to a negative angle, t ha t is, clockwise rotation, s, t, 
and ct reverse their direction, but c remains the same; tha t is, 

sin (— a) = — sin «, i 

COS ( — A ) = + C O S A , 

t an (—a) = — tan a, 

cot ( —o) = — cot a, 

(•) 

cos a thus is an " even function," while the three others are 
" odd functions." 
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Supplementary Angles. From the circle diagram of the 
trigonometric functions follows, as shown in Fig. 34, tha t by 
changing from an angle to its supplementary angle, s remains 
in the same direction, but c, t, and ct reverse their direction, 
and all four quantities retain the same numerical values, thus, 

sin (it—a) = +sin a , 

cos (tz— a) = — cos a , 

t an ( x — a ) = —tan a , 

cot (n—a) = — cot a. 

(7) 

FIG. 33. Functions of Negative 
Angles. 

F I G . 34. Functions of Supplementary 
Angles. 

Complementary Angles. Changing from an angle a to its 

complementary angle 90° — a , or — «, as seen from Fig. 35, 

the signs remain the same, but s and c, and also t and ct exchange 
their numerical values, thus , 

s i n ^ — a 

c o s ^ — a 

= COS IL. 

= sin a , 

t a n i ^ 

cot 

re — aj =COt a, 

(h. - tan a. 

(8) 
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70. Angle {a±Tt). Adding, or subtracting k to an angle a, 
gives the same numerical values of the trigonometric functions 

F I G . 35. Functions of Complemen- FIG. 36. Functions of Angles Plus 
tary Angles. or Minus x . 

as a, as seen in Fig. 36, but the direction of s and c is reversed, 
while t and ct remain in the same direction, thus , 

sin (a±7r) = —sin a, • 

COS (a ±7c) = — C O S a, 

t an (a ±n) = + t a n «, j 

cot (a ± t z ) = +co t cx. J 

changes the functions, s and c, and t and ci, and also reverses 



TRIGONOMETRIC SERIES. 101 

the direction of the cosine, tangent, and cotangent, but leaves 
the sine in the same direction, since the sine is positive in the 
second quadrant, as seen in Fig. 37. 

Subtracting or 90 deg. from angle a, interchanges the 

functions, s and c, and í and ct, and also reverses the direction, 
except tha t of the cosine, which remains in the same direction; 
tha t is, of the same sign, as the cosine is positive in the first 
and fourth quadrant , as seen in Fig. 38. Therefore, 

sin 

cos 

t an 

cot 

sin 

cos 

tan 

cot 

a+7) = — sin a. 

a+— J = — cot a, 

a -f— I = —tan a, 

(10) 

« - 0 = 

-5)-

— COS a, 

+sin a, 

a—— ] = — cot a, 

: — tan a. 

(11) 

Numerical Values. From the circle diagram, Fig. 28, etc., 
follows the numerical values: 

sin 0°==0 

sin 30° = i 

sin 45° = i". 2 

sin 60° = i 3 

sin 90° = 1 

sin 120° = } \ 3 

etc. 

cos 0°=1 

cos 30° = i V 3 

cos 45° = i 2 

cos 60° = i 
cos 90° = 0 

cos 120°= - i 

etc. 

tan 0° = 0 

tan 45°= 1 

tan 90° = oo 

tan 1 3 5 ° = - 1 

etc. 

cot 0° = oo 

cot 45°= 1 

cot 90° = 0 

cot 135° = - 1 

etc. 
• (12) 
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(13) 

7 i . Relations between Two Angles. The following relations 
are developed in text-books of trigonometry : 

sin (a +/?) =s in a cos 0 + cos a sin ß, 

sin (a — /?)=sin a cos 0—cos a sin /ï, 

cos (a +0) =cos a cos ß— sin a sin 0, 

cos (a — ß)=cosa cos 0 + s i n a sin ß, 

Herefrom follows, by combining these equations (13) in 
pairs: 

cos a cos/3 = i | c o s (a+0) + C O S (a—ß)}, 

sin a sin /?=4¡cos (a —0) —cos (a+0j) , 

sin a cos/3=JJsin ( a + 0 ) + s i n (a —0)}, 

cos a sin0 = | | s i n (a+ß) — sin (a —/?)}. 

By substituting ai for (a+0), and 0i for (a — ß) in these 
equations (14), gives the equations, 

(14) 

sin a i + s i n /?i = 2 sin 
ai+ßi 

2 
cos 

ai-ßu 
2 

sin ai — sin ,Si = 2 sin 
a i - / î i 

2 
COS 

ai+ßu 
2 

COS ai + C O S ßi = 2 cos «1+01 
2 

cos « l - ^ i , 

2 

COS ai — COS ßi = - 2 sin 
«i+,3i 

2 
sin « 1 - 0 1 . 

2 

(15) 

These three sets of equations are the most important trigo
nometric formulas. Their memorizing can be facilitated by 
noting tha t cosine functions lead to products of equal func
tions, sine functions to products of unequal functions, and 
inversely, products of equal functions resolve into cosine, 
products of unequal functions into sine functions. Also cosine 
functions show a reversal of the sign, thus : the cosine of a 
sum is given by a difference of products, the cosine of a differ
ence by a sum, for the reason tha t with increasing angle 
the cosine function decreases, and the cosine of a sum of angles 
thus would be less than the cosine of the single angle. 
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(16) 

s i n z a = 2 and cos 2 a = 
1 + cos 2a 

(16a) 

72. Differentiation. 

d , . , 
-7- ( s i n a) = +COS a, 

da ( COS a ) = — sin a. 

(17) 

The sign of the latter differential is negative, as with an 
increase of angle a, the cos a decreases. 

Integration. 

^"sin ada= — cosa, 

J~cosada= + s i n « . 

Herefrom follow the definite integrals : 

(18) 

c + 2* 
sin (a+a)da 

c + 2n 

cos (a + a)da 
. . . . 

C + lt 

sin (a + a)da = 2 cos (c+a); 

cos (a+a)da = — 2sin (c+a); 

(18a) 

(186) 

Double Angles. From (13) follows, by substituting a for ß : 

sin 2a = 2 sin a cos a, 

cos 2a = cos 2 a — sin 2 «, 

= 2 cos 2 « — 1 , 

= 1 — 2 sin 2 a. 

Herefrom follow 

. „ 1 — cos 2a 
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f 

í 

sin ada = 0; 

eos ada=0; 

sin a d a = + 1 ; 

eos a d a = + 1 . 

(18c) 

(18d) 

7 3 . Binomial. One of the most frequent trigonometric 
operations in electrical engineering is the transformation of the 
binomial, a cos a+b sin «, into a single trigonometric function, 
by the substitution, a = c cos p and ò = c sin p; hence, 

where 
acos a+b sin a = ccos (a—p), 

c = V a 2 + ò 2 and t a n p = — ; 

or, by the transformation, a = c sin q and & = c cos q, 

a cos « + & sin a = c sin ( a + o ) , . . 
where 

c = V a 2 + b2 and tan</ = ^ . 

(19) 

(20) 

(21) 

(22) 

7 4 . Polyphase Relations. 

2"\ / 2miiz\ 

»cos ^ a + o ± ^ — j = 0 , 

j sin ( ^ a + a ± - ^ r j = 0 , 

(23) 

where m and n are integer numberr. 

Proof. The points on the circle which defines the trigo

nometric function, by Fig. 28, of the angles (a + a ± ^ ^ . 
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are corners of a regular polygon, inscribed in the circle and 
therefore having the center of the circle as center of gravity. 
For instance, for n = 7, m = 2, they are shown as Pi, P2, • • • Pi, 
in Fig. 39. The cosines of these angles are the projections on 
the vertical, the sines, the projections on the horizontal diameter, 
and as the sum of the projections of the corners of any polygon, 

PIG. 39. Polyphase Relations. Fio. 40. Triangle. 

on any line going through its center of gravity, is zero, both 
sums of equation (23) are zero. 

•^-v / 2min\ I 2mìn\ n 
y i cos l a +a±- I cos I a + o ± — — I = ^ cos (a—c), 

>TA . / 2min\ . I 2min\ n 
y i sin I a +a±——I sin I a +b±—— 1 = ^ cos (a—6), 

sin a +a±-
2mv. Tt\ I 2mir\ n . , 

—J cos I <x+b±——I = ^ sin (a—6). 

(24; 

These equations are proven by substituting for the products 
the single functions by equations (14), and substituting them 
in equations (23). 

75. Triangle. If in a triangle a, ß, and r are the angles, 
opposite respectively to the sides a, b, c, Fig. 40, then, 

sin a -r-sin ß + sin r = a + b+c, . . . . (25) 
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a2 + b2-c2 

c o s r = - 2 á b — > 
or 

c2 = a2 + b2— 2ab cos y. 

. ab sin r 
A r e a = — ^ — 

c 2 sin a sin ß 
2 sin y 

• • (26) 

(27) 

B. TRIGONOMETRIC SERIES. 

76. Engineering phenomena usually are either constant, 
transient, or periodic. Constant, for instance, is the terminal 
voltage of a storage-battery and the current taken from it 
through a constant resistance. Transient phenomena occur 
during a change in the condition of an electric circuit, as a 
change of load; or, disturbances entering the circuit from the 
outside or originating in it, etc. Periodic phenomena are the 
alternating currents and voltages, pulsating currents as those 
produced by rectifiers, t he distribution of the magnetic flux 
in the air-gap of a machine, or the distribution of voltage 
around the commutator of the direct-current machine, the 
motion of the piston in the steam-engine cylinder, the variation 
of the mean daily temperature with the seasons of the year, etc. 

The characteristic of a periodic function, y=f(x), is, t ha t 
a t constant intervals of the independent variable x, called 
cycles or periods, the same values of the dependent variable y 
occur. 

Most periodic functions of engineering are functions of t ime 
or of space, and as such have the characteristic of univalence; 
that is, to any value of the independent variable x can corre
spond only one value of the dependent variable y. In other 
words,- at any .given time and given point of space, any physical 
phenomenon can have one numerical value only, and therefore 
must be represented by a univalent function of t ime and space. 

Any univalent periodic function, 

(i) 
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can be expressed by an infinite trigonometric series, or Fourier 
series, of the form, 

y = ao +a\ cos cx+a2 cos 2cx+a3 cos 3cx + . . . . 
+ 61 sin cx + b2 sin 2cx+b3 sin 3cx + . . . ; 

or, substituting for convenience, cx=0, this gives 

y = ao+ai cos 0 + a2 cos 26 + a3 cos 30 + . . . 

+bi sin 0 + ò 2 s i n 20 + b3 sin 30 + . . . ; . . 

(2) 

(3) 

or, combining the sine and cosine functions by the binomial 
(par. 73), 

y = a0+ci cos (0-/?i) + c 2 c o s (20—ß2)+c3cos(30-/?3) + . . 

= cío + ci sin (0 + y 1 ) + c 2 sin (20 + y2) + d sin (30 + 7-3) + . . 

where 

c„ = v / o r l

2 + 6 „ 2 ; 

AN' 

. (4) 

tan ßn --

or tan r« = 7T-

(5) 

The proof hereof is given by showing t ha t the coefficients 
an and b n of the series (3) can be determined from the numerical 
values of the periodic function (1), thus, 

</=/(*) =/o(0) '(6) 

Since, however, the trigonometric function, and therefore 
also the series of trigonometric functions (3) is univalent, it 
follows tha t the periodic function (6), y=fo(0), must be uni
valent, to be represented by a trigonometric series. 

77. The most important periodic functions in electrical 
engineering are the alternating currents and e.m.fs. Usually 
they are, in first approximation, represented by a single trigo
nometric function, as : 

i = io cos (0— co); 
or, 

e = eo sin (0— 3); 

that is, they are assumed as sine waves. 
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Theoretically, obviously this condition can never be perfectly 
attained, and frequently the deviation from sine shape is suffi
cient to require practical consideration, especially in those cases, 
where the electric circuit contains electrostatic capacity, as is 
for instance, the case with long-distance transmission lines, 
underground cable systems, high potential transformers, etc. 

However, no mat ter how much the alternating or other 
periodic wave differs from simple sine shape—that is, however 
much the wave is " distorted," it can always be represented 
by the trigonometric series (3). 

As illustration the following applications of the trigo
nometric series to engineering problems may be considered: 

(A) The determination of the equation of the periodic 
function; tha t is, the evolution of the constants an and bn of 
the trigonometric series, if the numerical values of the periodic 
function are given. Thus, for instance, the wave of an 
alternator may be taken by oscillograph or wave-meter, and 
by measuring from the oscillograph, the numerical values of 
the periodic function are derived for every 10 degrees, or every 
5 degrees, or every degree, depending on the accuracy required. 
The problem then is, from the numerical values of the wave, 
to determine its equation. While the oscillograph shows the 
shape of the wave, it obviously is not possible therefrom to 
calculate other quantities, as from the voltage the current 
under given circuit conditions, if the wave shape is not first 
represented by a mathematical expression. I t therefore is of 
importance in engineering to translate the picture or the table 
of numerical values of a periodic function into a mathematical 
expression thereof. 

(B) If one of the engineering quantities, as the e.m.f. of 
an alternator or the magnetic flux in the air-gap of an electric 
machine, is given as a general periodic function in the form 
of a trigonometric series, to determine therefrom other engineer
ing quantities, as the current, the generated e.m.f.. etc. 

A. Evaluation of the Constants of the Trigonometric Series from 
the Instantaneous Values of the Periodic Function. 

78. Assuming t ha t the numerical values of a univalent 
periodic function y=fo(6) are given; t ha t is, for every value 
of 0, the corresponding value of y is known, either by graphical 
representation, Fig. 4 1 ; or, in tabulated form, Table I, but 
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the equation of the periodic function is not known. I t can be 
represented in the form, 

y = a0+ai cos d+a2 cos 20 + a3 cos 30 + . .. +an cos n0 + , .. 

+h sin 6+b2 sin 2d+bs sin 3 0 + . . . +bn sin n0 + . . . , (7) 

and the problem now is, to determine the coefficients ao, a\. 

«2 • • . bh b2. • . . 

\ 0 s 

y \ / 
\ 2* / 

/ e dé \ 

F I G . 4 1 . Periodic Functions. 

T A B L E I . 

V e V 6 V e V 

0 - 6 0 i 9 0 + 50 1 8 0 + 1 2 2 2 7 0 + 8 5 

1 0 - 4 9 1 0 0 + 6 1 1 9 0 + 1 2 4 2 8 0 + 6 5 

2 0 - 3 8 1 1 0 + 7 1 2 0 0 + 1 2 6 2 9 0 + 3 5 

3 0 - 2 6 1 2 0 + 8 1 2 1 0 + 1 2 5 3 0 0 + 1 7 

4 0 - 1 2 1 3 0 + 9 0 2 2 0 + 1 2 3 3 1 0 0 

5 0 0 1 4 0 + 9 9 2 3 0 + 1 2 0 3 2 0 - 1 3 

6 0 + 1 1 1 5 0 + 1 0 7 2 4 0 + 1 1 6 3 3 0 - 2 6 

7 0 + 2 7 1 6 0 + 1 1 4 2 5 0 + 1 1 0 3 4 0 - 3 8 

80 + 3 9 1 7 0 + 1 1 9 2 6 0 + 1 0 0 3 5 0 - 4 9 

90 + 5 0 1 8 0 + 1 2 2 2 7 0 + 8 5 3 6 0 - 6 0 

Integrate the equation (7) between the limits 0 and 2n: 
/ - 2 n / * 2 * /*2» fi" 
j ydd = ao\ dO + ax \ cos Odd+a2\ cos2ödd + . . . 

Jo Jo Jo Jo 

cos n6dd + . . .+bi j sin 6d0 + 

ri* fi* 
+ ò 2 I sin 2dd0 + . . .+bn j únnddd + . 

i / 2* / / 2 * /sin 2d 

=ao/7o + a v á n 6 / o +ay-2~/o +---
/sin nd /2* , , / „ /2" 

+ a " / ~ n / • • • - o i / c o s y 
, / C O S 20 / 2 * «A / 2" 

— 0 2 / — 
ft* _ _ & /cos n0 / 2 * 



110 ENGINEERING MATHEMATICS. 

All the integrals containing trigonometric functions vanish, 
as the trigonometric function has the same value a t the upper 
limit 2n as at the lower limit 0, tha t is, 

/cos nd /2" 1 , „ 
/ - - / = - ( c o s 2mz — cos 0) = 0 ; 

/ n / o n 

/sin nd / 2 * 1 . m . 
—(sin 2nx — sin 0 ) = 0 , n / 0 n 

and the result is 
~2/r 

í/á0 = 0o / 0 / = 27ra 0: 

hence 

i p * 
ao = 2 ^ l 2/¿0 (8) 

ydO is an element of the area of the curve y, Fig. 41, and 

ydO thus is the area of the periodic function y, for one 
o 

period ; t ha t is, 

a ° = 2 ^ ' ( 9 ) 

where A = area of the periodic function y=fo{d), for one period; 
t h a t is, from 0 = 0 to 0 = 2 * . 

A 
2x is the horizontal width of this area A, and ^ - thus is 

the area divided by the width of i t ; t ha t is, it is the average 
height of the area A of the periodic function y; or, in other 
words, it is the average value of y. Therefore, 

Oo = avg. (y)o2" (10) 

The first coefficient, ao, thus , is the average value of the 
instantaneous values of the periodic function y, between 0 = 0 
and 0 = 2 * . 

Therefore, averaging the values of y in Table I, gives the 
first constant ao. 

7 9 . To determine the coefficient a„, multiply equation (7) 
by cos nd, and then integrate from 0 to 2TC, for the purpose of 
making the trigonometric functions vanish. This gives 
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ri* r - K / * 2 * 

i y cos nddd = a0 ) cos nöiö +ax I cos n0 cos 0d0 
Jo J J -A) 

2 I cos no cos 26dd + . . . + a „ | < 
Jo Jo 

ri* ri* 

+61 I cosnös inodo+ 621 cosn0sin20d<? + . . . 
Jo Jo 
f2" 

+b„ I cos nd sin nddO + . .. 
Jo 

Hence, by the trigonometric equations of the preceding 
section : 

(2* /"2it / " 2 * 

y cos nddd=a0 J cosnödö+ai I J[cos(n+l)0+cos(n—l)0]d0 

+ a2J i[cos (n + 2)0 + cos (n -2)0]d0 + . . . 
/ ~ 2 > r 

+a.„J i ( l + c o s 2 n 0 ) d 0 + . . . 

+&ij""*è[sin (n + l ) 0 - s i n ( n - l ) 0 ] d 0 

I § [ s i n ( n + 2 ) 0 - s i n ( n - 2 ) 0 ] d 0 + . . . 
0 

X2* 

Js in2n0d# + . . . 

All these integrals of trigonometric functions give trigo
nometric functions, and therefore vanish between the limits 0 
and 2-k, and there only remains the first term of the integral 
multiplied with a„, which does not contain a trigonometric 
function, and thus remains finite : 

f 2 * l / 0 \ 2 * 
a n \ ^dff = an\^J =an7z, 

and therefore, 

I y cos nddd = ann\ 
Jo 

hence 
1 f2* 

0 » = - I y cos nddd (H) 
* Jo 

+ 

+ a 2 I cos nd cos 26d6 + . . . + a „ I cos 2 nddO +... 
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If the instantaneous values of y are multiplied with cos nd, 
and the product yn = y cos nd plotted as a curve, y cos nddd is 
an element of the area of this curve, shown for n = 3 in Fig. 42, 

FIG. 42. Curve of y cos 39. 

where An is the area of the curve y cos nd, between 0 = 0 and 
0 = 2*. 

As 2r. is the width of this area An, is the average height 

of this area; tha t is, is the average value of y cos n0, and -A„ 

thus is twice the average value of y cos nd; tha t is, 

a „ = 2 a v g . (y cos rc0)o2,r (13) 

FIG. 43. Curve of y sin 30. 

The coefficient a„ of cos nd is derived by multiplying all 
the instantaneous values of y by cos nd, and taking twice the 
average of the instantaneous values of this product y cos nd. 
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80. bn is determined in the analogous manner by multiply
ing y by sin nd and integrating from 0 to 2?r; by the area of the 
curve y sin nd, shown in Fig. 43, for n = 3, 

y sin ndd6 = a0 j sin nddd+ai ( sin nd cos ddd 
a Jo Jo 

/"2X /*2* 

+ a2J sin nd cos 2ddd +. . . + an\ sin nd cos nddd +... 

sm nd sin ddd+ b2 j sin no sin 20d0 + . . . 

r¿x 

+ bnj sin2 nddd+ ... 

FL* FIX 

= ao( sinn0d0 + ai I ¿[sin (w + l ) 0 + s i n ( n - l ) 0 ] d 0 

+ a2jÇ ¿[sin (n + 2)<?+sin (n -2 )0 ]d0 + . . . 

X2ir 
¿sin 2nddd + ... 

X 2X 

¿[eos ( n - l ) 0 - c o s (n + l)0]d0 

+ b2jj* h[coa (n-2)6-cos (n + 2)0]d0 + . . . 

+ bn j 2-[l-cos2n0]d0 + . . . 
Jo 

Ç2« 

*=b„ I \dd = bnn; 
Jo 

hence, 
1 T 2 " 

6„ = - I ysmnddO (14) 
KJO 

= - An', (15) 

71 

where A n ' is the area of the curve y n ' = y sin nd. Hence, 

6 „ = 2 avg. (y sin noy2", (16) 
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and the coefficient of sin nd thus is derived by multiplying the 
instantaneous values of y with sin nd, and then averaging, as 
twice the average of y sin nd. 

81. Any univalent periodic function, of which the numerical 
values y are known, can thus be expressed numerically by the 
equation, 
y = a0+ai cos 0+a2 cos 20 + . . . +a„ cos nd + . . . 

+61 sin 0 + 6 2 sin 20 + . . . +bn sin nd + . . . , . (17) 

where the coefficients a0, a\, a 2, . . . b\, b2. . . , are calculated 
as the averages : 

«o = avg. (y)0

2"; 

ai = 2 avg. (j/cos d)0

2"; 

a2 = 2 avg. (y cos 20 ) o

2 * 

a n = 2 avg. (y cos nd)0

2" 

Hereby any individual harmonic can be calculated, without 
calculating the preceding harmonics. 

For instance, let the generator e.m.f. wave, Fig. 44, Table 
I I , column 2, be impressed upon an underground cable system 

F I G . 44. Generator e.m.f. wave. N 

of such constants (capacity and inductance), tha t the natural 
frequency of the system is 670 cycles per second, while the 
generator frequency is 60 cycles. The natural frequency of the 

òi = 2 a v g . fi/sin 0) o

2 *; 

ò 2 = 2 avg. (y sin 26)0

2"; 
.. (18) 

o„ = 2 avg. (y sin nd)0

2"; 
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circuit is then close to tha t of the 11th harmonic of the generator 
wave, 660 cycles, and if the generator voltage contains an 
appreciable 11th harmonic, trouble may result from a resonance 
rise of voltage of this frequency; therefore, the 11th harmonic 
of the generator wave is to be determined, tha t is, a n and bn 
calculated, but the other harmonics are of less importance. 

T A B L E I I 

ff V c o s 119 s i n 110 y c o s uff ] / s i n Uff 

0 5 + 1.000 0 + 5.0 0 
10 4 - 0 . 3 4 2 + 0.940 - 1 . 4 + 3.8 
20 20 -0 .766 - 0 . 6 4 3 - 1 5 . 3 - 1 2 . 9 

30 22 + 0.866 - 0 . 5 0 0 + 19.1 - 1 1 . 0 
40 19 + 0.174 + 0.985 + 3.3 + 18.7 
50 25 - 0 . 9 8 5 -0 .174 - 2 4 . 6 - 4.3 

60 29 + 0.500 -0 .866 + 14.5 - 2 5 . 1 
70 29 + 0.643 + 0.766 + 18.6 + 22.2 
80 30 - 0 . 9 4 0 + 0.342 - 2 8 . 2 + 10.3 

90 38 0 - 1 . 0 0 0 0 - 3 8 . 0 
100 46 + 0.940 + 0.342 + 43.3 + 15.7 
110 38 - 0 . 6 4 3 + 0.766 - 2 4 . 4 + 29.2 

120 41 - 0 . 5 0 0 - 0 . 8 6 6 - 2 0 . 5 - 3 5 . 5 
130 50 + 0.985 - 0 174 + 49.2 - 8.7 
140 32 - 0 . 1 7 4 + 0.985 - 5 . 6 + 31.5 

150 30 -0 .866 - 0 . 5 0 0 - 2 6 0 
160 33 + 0.766 - 0 . 6 4 3 + 25.3 - 1 5 . 0 
170 7 + 0.342 + 0.940 + 2.2 - 2 1 . 3 

180 - 5 

Total 
Divided b y 9 

+ 34.5 
+ 3.83 = a„ 

- 2 9 . 8 
- 3 . 3 1 = b „ 

In the third column of Table I I thus are given the values 
of cos 110, in the fourth column sin 110, in the fifth column 
y cos 110, and in the sixth column y sin 110. The former gives 
as average +1.915, hence o n = +3.83 , and the latter gives as 
average —1.655, hence bn = — 3.31, and the 11th harmonic of 
the generator wave is 

a n cos 110 + b n sin 110 = 3.83 cos 1 1 0 - 3 . 3 1 sin 110 
- 5 . 0 7 cos (110 + 41°), 
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hence, its effective value is 

5.07 
- 7 ^ = 3.58, 

while the effective value of the tota l generator wave, tha t 
is, the square root of the mean squares of the instanta
neous values y, is 

e = 30.5, 

thus the 11th harmonic is 11.8 per cent of the total voltage, 
and whether such a harmonic is safe or not, can now be deter
mined from the circuit constants, more particularly its resist
ance. 

82. In general, the successive harmonics decrease; t ha t is, 
with increasing n, the values of an and bn become smaller, and 
when calculating a„ and bn by equation (18), for higher values 
of n they are derived as the small averages of a number of 
large quantities, and the calculation then becomes incon
venient and less correct. 

Where the entire series of coefficients an and bn is to be 
calculated, it thus is preferable not to use the complete periodic 
function y, but only the residual left after subtracting the 
harmonics which have already been calculated; tha t is, after 
o 0 has been calculated, it is subtracted from y, and the differ
ence, yi=y—a0, is used for the calculation of a\ and 61. 

Then ax cos 6+bi sin 6 is subtracted from yi, and the 
difference, 

y 2 = y i — (ai cos 6+bi sin 6) 

= y— (a0 + ai cos 6+bi sin 6), 

is used for the calculation of a2 and b2. 
Then o 2 cos 26 +b2 sin 26 is subtracted from y2, and the rest, 

y3, used for the calculation of a:i and 63, etc. 
In this manner a higher accuracy is derived, and the calcu

lation simplified by having the instantaneous values of the 
function of the same magnitude as the coefficients a n and b„. 

As illustration, is given in Table I I I the calculation of the 
first three harmonics of the pulsating current, Fig. 41 , Table I : 
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83. In electrical engineering, the most important periodic 
functions are the alternating currents and voltages. Due to 
the constructive features of alternating-current generators, 
alternating voltages and currents are almost always symmet
rical waves; tha t is, the periodic function consists of alternate 
half-waves, which are the same in shape, but opposite in direc
tion, or in other words, the instantaneous values from 180 deg. 
to 360 deg. are the same numerically, but opposite in sign, 
from the instantaneous values between 0 to 180 deg., and each 
cycle or period thus consists of two equal but opposite half 
cycles, as shown in Fig. 44. In the earlier days of electrical 
engineering, the frequency has for this reason frequently been 
expressed by the number of half-waves or alternations. 

In a symmetrical wave, those harmonics which produce a 
difference in the shape of the positive and the negative half-
wave, cannot exist; t ha t is, their coefficients a and b must be 
zero. Only those harmonics can exist in which an increase of 
the angle 0 by 180 deg., or JT, reverses the sign of the function. 
This is the case with cos nd and sin nd, if n is an odd number. 
If, however, n is an even number, an increase of d by 71 increases 
the angle nd by 2it or a multiple thereof, thus leaves cos nd 
and sin nd with the same sign. The same applies to a 0 . There
fore, symmetrical alternating waves comprise only the odd 
harmonics, but do not contain even harmonics or a constant 
term, and thus are represented by 

y=ai cos d +113 cos 3d+a5 cos 5Ö + . . . 

+61 sin d+b3 sin 3d+b5 sin 5d+ (19) 

When calculating the coefficients a „ and bn of a symmetrical 
wave by the expression (18), it is sufficient to average from 0 
to 7t; tha t is, over one half-wave only. In the second half-wave, 
cos nd and sin nd have the opposite sign as in the first half-wave, 
if n is an odd number, and since y also has the opposite sign 
in the second half-wave, y cos nd and y sin nd in the second 
half-wave traverses again the same values, with the same sign, 
as in the first half-wave, and their average thus is given by 
averaging over one half-wave only. 

Therefore, a symmetrical univalent periodic function, as an 
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TABLE 

ä V ]/, COH 0 1/ 1 s i n 6 CI = ai C O S 0 
+ 6 t s i n 0 

0 - 6 0 - 1 1 1 - 1 1 1 0 - 8 4 - 2 7 
10 - 4 9 - 1 0 0 - 9 8 - 1 7 - 8 5 - 1 5 
20 - 3 8 - 8 9 - 8 4 - 3 0 - 8 3 - 6 

30 - 2 6 - 7 7 - 6 7 - 3 8 - 7 9 + 2 
40 - 1 2 - 6 3 - 4 8 - 4 0 - 7 2 9 
50 0 - 5 1 - 3 3 - 3 9 - 6 3 12 

60 + 11 - 4 0 - 2 0 - 3 5 - 5 2 12 
70 27 - 2 4 - 8 - 2 3 - 4 0 16 
80 39 - 1 2 - 2 - 1 2 - 2 6 14 

90 50 - 1 0 - 1 - 1 1 10 
100 61 + 10 - 2 + 10 + 4 6 
110 71 20 - 7 + 19 18 + 2 

120 81 30 - 1 5 + 26 32 - 2 
130 90 39 - 2 5 + 30 45 - 6 
140 99 48 - 3 7 + 31 58 - 1 0 

150 107 56 - 4 9 + 28 67 - 1 1 
160 114 63 - 5 9 + 22 75 - 1 2 
170 119 68 - 6 7 + 12 81 - 1 3 

180 122 71 - 7 1 0 84 - 1 3 
190 124 73 - 7 2 - 1 3 85 - 1 2 
200 126 75 - 7 1 - 2 6 83 - 8 

210 125 74 - 6 4 - 3 7 79 — 5 
220 123 72 - 5 5 - 4 7 72 0 
230 120 69 - 4 4 - 5 3 63 + 6 

240 116 65 - 3 2 - 2 8 52 13 
250 110 59 - 2 0 - 5 6 40 19 
260 100 49 - 9 - 4 8 26 23 

270 85 34 0 -.34 11 23 
280 65 + 14 + 2 - 1 4 - 4 18 
290 35 - 1 6 - 5 + 15 - I S + 2 

300 + 17 - 3 4 - 1 7 + 30 - 3 2 - 2 
310 0 - 5 1 - 3 3 + 39 - 4 5 - 6 
320 - 1 3 - 6 4 - 4 9 + 41 - 5 8 - 6 

330 - 2 6 - 7 5 - 6 5 + 37 - 6 7 - 8 
340 - 3 8 - 8 9 - 8 4 + 30 - 7 5 - 1 4 
350 - 4 9 - 1 0 0 - 9 9 + 17 - 8 1 - 1 9 

Total . . 
Divided 
by 36 ... 

+ 1826 

+ 50.7 = 0 , 

Total 
Divided by 

18 

-1520 

- 8 4 . 4 = a, 

- 2 0 4 

- 1 1 . 3 = 6, 

Total 
Divided by 18. .. 
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I I I . 

V¡ c o s 26 l/s s i n 2 0 
c = fit c o a 28 

- l - i i s i u 26 
l/a e o s 3 0 1/3 s i n 3 0 e 

- 2 7 
— 14 

— 5 

0 
- 5 
- 4 

- 1 5 
- 1 2 

- 7 

- 1 2 
- 3 
+ 1 

- 1 2 
- 3 

0 

0 
- 1 
+ 1 

0 
10 
20 

+ 1 
+ 2 
- 2 

+ 2 
+ 9 

+ 12 

- 1 
+ 4 
11 

+ 3 
+ 5 
+ 1 

0 
- 2 
- 1 

+ 3 
+ 4 

0 

30 
40 
50 

- 6 
- 1 2 
- 1 3 

+ 10 
+ 10 

+ 5 

13 
15 
16 

- 1 
+ 1 
— 2 

+ 1 
- 1 
+ 1 

0 
0 

+ 2 

60 
70 
80 

- 1 0 
- 6 
- 2 

0 
- 2 
- 1 

15 
12 
7 

- 5 
- 6 
- 5 

0 
- 3 
- 4 

+ 5 
+ 5 
+ 2 

90 
100 
110 

+ 1 
+ 1 
- 2 

+ 2 
+ 6 

+ 10 

+ 1 
- 4 

- 1 1 

- 3 
- 2 
+ 1 

- 3 
- 2 

0 

0 
- 1 
+ 1 

120 
130 
140 

- 5 
- 9 

- 1 2 

+ 10 
+ 8 
- 4 

- 1 3 
- 1 5 
- 1 6 

+ 2 
+ 3 
+ 3 

0 
- 1 
- 3 

+ 2 
+ 3 
+ 1 

150 
160 
170 

- 1 3 
- 1 1 
- 6 

0 
- 4 
- 6 

- 1 5 
- 1 2 
- 7 

+ 2 
0 

- 1 

- 2 
0 
0 

0 
0 

- 1 

180 
190 
200 

- 2 
0 

- 1 

- 4 
0 

+ 6 

- 1 
+ 4 
II 

- 4 
- 4 
- 5 

0 
- 2 
- 4 

- 4 
- 4 
- 2 

210 
220 
230 

- 6 
- 1 5 
- 2 2 

+ 11 
+ 12 
+ 8 

13 
15 
16 

0 
+ 4 
+ 7 

0 
+ 4 
+ 3 

0 
+ 2 
+ 6 

240 
250 
260 

- 2 3 
- 1 7 

- 2 

0 
- 6 
- 1 

15 
12 
7 

+ 8 
+ 6 
- 5 

0 
- 3 
+ 4 

+ 8 
+ 5 
- 2 

270 
280 
290 

+ 1 
+ 1 
- 1 

+ 2 
+ 6 
+ 6 

+ 1 
- 4 

- 1 1 

- 3 
-2 
+ 5 

+ 3 
+ 2 
_ 2 

0 
+ 1 
- 4 

300 
310 
320 

- 4 
- 1 1 
- 1 8 

+ 7 
+ 9 
+ 6 

- 1 3 
- 1 5 
- 1 6 

+ 5 
+ 1 
- 3 

0 
0 

- 3 

— 5 
- l 
+ 1 

330 
340 
350 

-270 
-15.0 = 02 

+ 120 
+ 6.7 = 62 

Total - 3 3 
Divided by 18 - 1 . 8 = 0 , 

+ 27 
+ 1.5 = b3 
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84. From 180 deg. to 360 deg., the even harmonics have 
the same, but the odd harmonics the opposite sign as from 0 
to 180 deg. Therefore adding the numerical values in the 
range from 180 deg. to 360 deg. to those in the range from 0 
to 180 deg., t he odd harmonics cancel, and only the even har
monics remain. Inversely, by subtracting, the even harmonics 
cancel, and the odd ones remain. 

Hereby the odd and the even harmonics can be separated. 
If y = y{6) are the numerical values of a periodic function 
from 0 to 180 deg., and y' = y(6+7z) the numerical values of 
the same function from 180 deg. to 360 deg., 

!fe(0) = i { ! , ( 0 ) + 0 ( 0 + * ) } , . . . . (22) 

is a periodic function containing only the even harmonics, and 

yi{9) = \{y{6)-y{6+7z)\ (23) 

is a periodic function containing only the odd harmonics ; t h a t is : 

yi{d)=a\ cos 0 + a 3 cos 3 0 + a 5 cos 56 + . .. 

+ Ò! sin 0 + 63 sin 3 6+b5 sin 5 0 + . . (24) 

1/2(0) = a 0 + a 2 cos 2 0 + a 4 cos 40 + . . . 

+ 6 2 sin 20 + b4 sin 40 + . . . , (25) 

and the complete function is 

y{0)=y1(d)+y2(6) (26) 

al ternating voltage and current usually is, can be represented 
by the expression, 

y = ai cos 0 + a 3 cos 3 0 + a 5 cos 5 6+a7 cos 7 0 + . . . 

+ bi sin 6+b3 sin 3 6+b5 sin 5 6+b7 sin 7 6 +...; (20) 

where, 

a i = 2 avg. (y cos 6)0"; bi = 2 avg. (y sin 0) o*; 

a 3 = 2 avg. (y cos 30) o*; 6 3 = 2 avg. (j/ sin 30) O

T ; 

a 5 = 2 avg. (j/ cos 5Ö) 0"; bò = 2 avg. (t/ sin 50) o*; 

a 7 = 2 avg. (y cos 70),,"; 6 7 = 2 avg. (2/ sin 7 0 ) 0 " . 
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By this method it is convenient to determine whether even 
harmonics are present, and if they are present, to separate 
them from the odd harmonics. 

Before separating the even harmonics and the odd har
monics, it is usually convenient to separate the constant term 
a0 from the periodic function y, by averaging the instantaneous 
values of y from 0 to 360 deg. The average then gives a0, 
and subtracted from the instantaneous values of y, gives 

yo(d)=y(0)-ao (27) 

as the instantaneous values of the alternating component of the 
periodic function; tha t is, the component y0 contains only the 
trigonometric functions, but not the constant term. y0 is 
Mnen resolved into the odd series y\, and the even series y2. 

85. The alternating wave y0 consists of the cosine components : 

w(0) = a i cos d+a2 cos 20 + Ü3 cos 30 + 04 cos 40 + . . . , (28) 

and the sine components : 

v(6)=bi sin 6 + b2 sin 20 + 6 3 sin 3 0 + b4 sin 40 + . . . ; (29) 

tha t is, 
y0{0)=u(6)+v(6) (30) 

The cosine functions retain the same sign for negative 
angles ( — 0), as for positive angles( + 0), while the sine functions 
reverse their sign; tha t is, 

M ( - 0 ) = + M ( 0 ) and v{-0) = -v(0). . . . (31) 

Therefore, if the values of y0 for positive and for negative 
angles 0 are averaged, the sine functions cancel, and only the 
cosine functions remain, while by subtracting the values of 
y0 for positive and for negative angles, only the sine functions 
remain; tha t is, 

2 /O (0 )+2 /O ( -0 )=2M (0 ) ,1 
(32) 

2/o(0)-2/o(-0)=2t>(0);J 
hence, the cosine terms and the sine terms can be separated 
from each other by combining the instantaneous values of y0 

for positive angle 0 and for negative angle ( — 0), t hus : 

«(0) = §i2/oW+2A>(-0)!, ] 

v(d) = h\y0(d)-y0(-d)]. 
(33) 



122 ENGINEERING MATHEMATICS. 

Usually, before separating the cosine and the sine terms, 
u and V, first the constant term aQ is separated, as discussed 
above; tha t is, the alternating function y0 = y—a0 used. If 
the general periodic function y is used in equation (33), the 
constant term a 0 of this periodic function appears in the cosine 
term u, t hus : 

u(0) = \\y(ß) +y(-6)} = a 0 + a i cos 0 + a 2 c o s 2 0 + a 3 cos30 + . . ., 

while v(6) remains the same as when using y0. 
86. Before separating the alternating function y0 into the 

cosine function u and the sine function v, it usually is more 
convenient to resolve the alternating function y0 into the odd 
series yi, and the even series y2, as discussed in the preceding 
paragraph, and then to separate y\ and y2 each into the cosine 
and the sine terms : 

" i ( 0 ) = ¿ Í 3 / i ( 0 ) + 2 / i ( - 0 ) } = a i c o s 0 + a 3 c o s 3 0 + a 5 c o s 5 0 + . . .; ] 
(34) 

v i ( 0 ) = i j 2 / i ( 0 ) - i / i ( - 0 ) } = b i s i n 0 + 6 3 s i n 3 0 + 6 5 s i n 5 0 + . . ..: J 

W2(0) = è { i / 2 ( 0 ) + i / 2 ( - 0 ) ì = a 2 C o s 2 0 + a 4 c o s 4 0 + . . ; ] 
• • (35) 

v2(6) = ¿Í 2 / 2 (0 ) - î / 2 ( - 0) ! = b2 sin 20 +64 sin 40 + . . . j 
In the odd functions Wi and V\, a change from the negative 

angle (—0) to the supplementary angle (n— 0) changes the angle 
of the trigonometric function by an odd multiple of u or 180 
deg., t ha t is, by a multiple of 2TZ or 360 deg., plus 180 deg., 
which signifies a reversal of the function, thus : 

ul(0) = i\yi(8)-yl(z-6)\, 1 
. . . . (36) 

» i ( 0 ) = l { y i ( 0 ) + y i ( * - ^ } . j 

However, in the even functions w 2 and v2 a change from the 
negative angle ( — 0) to the supplementary angle (TT— 0), changes 
the angles of the trigonometric function by an even multiple 
of 7T; t h a t is, by a multiple of 2n or 360 deg.; hence leaves 
the sign of the trigonometric function unchanged, thus : 

«2(0) = 2-{î/ 2(0)+?/2(*-0)S, 1 

v 2(0) = i { t / 2 ( 0 ) - V i ( * - 0 ) \ . j 
(37) 
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To avoid the possibility of a mistake, it is preferable to use 
the relations (34) and (35), which are the same for the odd and 
for the even series. 

87. Obviously, in the calculation of the constants an and 
b„, instead of averaging from 0 to 180 deg., the average can 
be made from —90 deg. to +90 deg. In the cosine function 
u(0), however, the same numerical values repeated with the 
same signs, from 0 to —90 deg., as from 0 to +90 deg., and 
the multipliers cos nd also have the same signs and the same 
numerical values from 0 to —90 deg., as from 0 to + 9 0 deg. 
In the sine function, the same numerical values repeat from 0 
to —90 deg., as from 0 to +90 deg., but with reversed signs, 
and the multipliers sin nd also have the same numerical values, 
but with reversed sign, from 0 to —90 deg., as from 0 to + 9 0 
deg. The products u cos nd and v sin nd thus traverse the 
same numerical values with the same signs, between 0 and 
— 90 deg., as between 0 and + 9 0 deg., and for deriving the 

averages, it thus is sufficient to average only from 0 to - , or 

90 deg. ; t ha t is, over one quandrant. 
Therefore, by resolving the periodic function y into the 

cosine components u and the sine components v, the calculation 
of the constants a„ and bn is greatly simplified; that is, instead 
of averaging over one entire period, or 360 deg., it is necessary 
to average over only 90 deg., t hus : 

<ii=2 avg. (m cos 6)02 ; 61 = 2 avg. (vi sin d)0

2 ; 

a 2 = 2 avg. (w2 cos 2 0 ) o

2 ; b2 = 2 avg. (v2 sin 20)o 2 

rr TT 

a3 = 2 avg. (w3 cos 3&)0

2 ; b3=2 avg. (v3 sin 3£% 2 ; j . . ( 3 8 ) 

a4 = 2 avg. ( u i cos 4 0 ) o

2 ; 6 4 = 2 avg. (u 4 sin 4 0 ) o

2 

o 5 = 2 avg. (i/ 5 cos 50)0^;. &5 = 2 avg. (y s sin 50) o2": 

etc. etc. 

where w i is the cosine term of the odd function yi) u 2 the 
cosine term of the even function y2; u 3 is the cosine term of 
the odd function, after subtracting the term with cos 0; t ha t is, 

u3=ui — Oi cos 6, 
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analogously, u4 is the cosine term of the even function, after 
subtract ing the term cos 20; 

Ui = U2 — d2 cos 20, 

and in the same manner, 

ws = U3 — CI3 cos 3d, 
Uß = 114—0,4 cos 46, 

and so forth; vi, v2, v3, vit etc., are the corresponding sine 
terms. 

When calculating the coefficients a„ and bn by averaging over 
90 deg., or over 180 deg. or 360 deg., it must be kept in mind 
tha t the terminal values of y respectively of u or v, t ha t is, 
the values for 0 = 0 and 0 = 90 deg. (or 0 = 180 deg. or 360 
deg. respectively) are to be taken as one-half only, since they 
are the ends of the measured area of the curves an cos nd and 
bn sin nd, which area gives as twice its average height the values 
an and b„, as discussed in the preceding. 

In resolving an empirical periodic function into a tr igono
metric series, just as in most engineering calculations, the 
most important part is to arrange the work so as to derive the 
results expeditiously and rapidly, and a t the same time 
accurately. By proceeding, for instance, immediately by the 
general method, equations (17) and (18), the work becomes so 
extensive as to be a serious waste of t ime, while by the system
atic resolution into simpler functions the work can be greatly 
reduced. 

88. I n resolving a general periodic function y(6) into a 
trigonometric series, the most convenient arrangement is : 

1. To separate the constant term a0, by averaging all t he 
instantaneous values of y(6) from 0 to 360 deg. (counting the 
end values at 0 = 0 and a t 0 = 360 deg. one half, as discussed 
above) : 

a 0 = a v g . \y(6)}0

2*, (10) 

and then subtracting o 0 from y(6), gives the alternating func
tion, 

Mo(«)~vW-«o-
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(34) 

(35) 

2. To resolve the general alternating function yo(0) into 
the odd function yi{0), and the even function y2(6), 

!,i(0) = H s , o W I ; • • • • (23) 
2/2(ö) = H ?y 0(Ö)+2/ 0(ö+*)i (22) 

3. To resolve yi(0) gnd y2(6)) into the cosine terms u and 
the sine terms v, 

«i(0) = l | y i (0 ) 

wi(0) = l { l , i ( ö ) - y i ( - 0 ) } 

«a(0) = i{Va(0)+!fe(-0)} 

t»a(»)- i j î ,2(0)- î ,2(-f f )} 
4. To calculate the constants 01, 02, 03. . .; 61, 62, &3. • • 

by the averages, 

o „ = 2 avg. (li.cos nd)02 ; 
. ^ • • • W 

6 n = 2 avg.(i;,sin nâ)0

2. j 

If the periodic function is known to contain no even har
monics, t ha t is, is a symmetrical alternating wave, steps 1 and 
2 are omitted. 

20* 

15" 
10° 

O . r . n . F e b . April M«y J u l y A u g . 
5 

2 ) T J « n . 
Sep. 

-10 
FIG. 45. Mean Daily Temperature at Schenectady. 

89. As illustration of the resolution of a general periodic 
wave may be shown the resolution of the observed mean daily 
temperatures of Schenectady throughout the year, as shown 
in Fig. 45, up to the 7th harmonic* 

* The numerical values of temperature cannot claim any great absolute 
accuracy, as they are averaged over a relatively small number of years only, 
and observed by instruments of only moderate accuracy. For the purpose 
of illustrating the resolution of the empirical curve into a trigonometric 
series, this is not essential, however. 
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T A B L E I V 

(1) 
e 

( 2 ) 
y 

( 3 ) 
y — ao = = ya 

(4) 
l/l 

(5) 
w 

Jan. 0 - 4.2 - 1 2 95 - 1 3 . 1 0 + 0 15 
10 - 4.7 - 1 3 45 - 1 3 . 5 5 + 0 10 
20 - 5.2 - 1 3 95 - 1 3 . 6 5 - 0 30 

Feb. 30 - 5.4 - 1 4 15 - 1 3 . 5 5 - 0 60 
40 - 3.8 - 1 2 55 - 1 2 . 3 5 - 0 20 
50 - 2.6 - 1 1 35 - 1 1 . 2 0 - 0 15 

Mar. 60 - 1.6 - 1 0 35 - 9.75 - 0 60 
70 + 0.2 - 8 55 - 7.65 - 0 90 
80 + 1.8 - 6 95 - 6.05 - 0 90 

Apr. 90 + 5.1 - 3 65 - 3.35 - 0 30 
100 + 9.1 + 0 35 - 0.35 + 0 70 
110 + .11.5 + 2 75 + 1.75 + 1 00 

May 120 + 13.3 + 4 55 + 3.90 + 0 65 
130 + 15.2 + 6 45 + 5.85 + 0 60 
140 + 17.7 + 8 95 + 8.15 + 0 80 

June 150 + 19.2 + 10 45 + 10.10 + 0 35 
160 + 19.5 + 10 75 + 10.80 - 0 05 
170 + 20.6 + 11 85 + 12.15 - 0 30 

July ISO + 22.0 + 13 25 
190 + 22.4 + 13 65 
200 + 22.1 + 13 35 

Aug. 210 + 21.7 + 12 95 
220 + 20.9 + 12 15 
230 + 19.8 + 11 05 

Sept. 240 + 17.9 + 9 15 Sept. 
250 + 15.5 + 6 75 
260 + 13.8 + 5 15 

Oct. 270 + 11.8 + 3 05 
280 + 9.8 + 1 05 
290 + 8.0 - 0 75 

Nov. 300 + 5.5 - 3 25 
310 + 3.5 — 5 25 
320 + 1.4 - 7 35 

Dec. 330 - 1.0 - 9 75 
340 - 2.1 - 1 0 85 
350 - 3.7 - 1 2 45 

Total 
Divided by 36. 

315.1 
8.75 = a„ 
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T A B L E V . 

( 1 ) 
e 

( 2 ) 
I» 

( 3 ) 
U l 

( 4 ) 
» i 

( S ) 
w 

( 6 ) 
m 

( 7 ) 
vt 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

- 9 0 
- 8 0 
- 7 0 

- 6 0 
- 5 0 
- 4 0 

- 3 0 
- 2 0 
- 1 0 

+ 3.35 
+ 0.35 
- 1.75 

- 3.90 
- 5.85 
- 8.15 

- 1 0 . 1 0 
- 1 0 . 8 0 
- 1 2 . 1 5 

- 0 . 3 0 
+ 0.70 
+ 1.00 

+ 0.65 
+0 .60 
+ 0.80 

+ 0.35 
- 0 . 0 5 
- 0 . 3 0 

0 - 1 3 . 1 0 - 1 3 . 1 0 0 + 0.15 + 0.15 0 
+ 10 - 1 3 . 5 5 - 1 2 . 8 5 - 0 . 7 0 + 0.10 - 0 . 1 0 + 0.20 
+ 20 - 1 3 . 6 5 - 1 2 . 2 3 - 1 . 4 2 - 0 . 3 0 - 0 . 1 7 - 0 . 1 2 

+ 30 - 1 3 . 5 5 - 1 1 . 8 2 - 1 . 7 3 - 0 . 6 0 - 0 . 1 2 - 0 . 4 7 
+ 40 - 1 2 . 3 5 - 1 0 . 2 5 - 2 . 1 0 - 0 . 2 0 + 0.30 - 0 . 5 0 
+ 50 - 1 1 . 2 0 - 8.53 - 2 . 6 7 - 0 . 1 5 + 0.22 - 0 . 3 7 

+ 60 - 9.75 - 6.82 - 2 . 9 3 - 0 . 6 0 + 0.02 - 0 . 6 2 
+ 70 - 7.65 - 4.70 - 2 . 9 5 - 0 . 9 0 + 0.05 - 0 . 9 5 
+ 80 - 6.05 - 2.85 - 3 . 2 0 - 0 . 9 0 - 0 . 1 0 - 0 . 8 0 

+ 90 - 3.35 0 - 3 . 3 5 - 0 . 3 0 - 0 . 3 0 0 



TABLE V I . 

COSINE SERIES 

r 
(1) 
6 

( 2 ) ( 3 ) 
o o s 8 

( 4 ) 
u t c o a 6 

( 5 ) 
a i c o s d 

( 6 ) 
iti 

( 7 ) 
u s c o s 38 

( 8 ) 
ai c o s 3 d 

( 9 ) 
u t 

( I O ) 
ui c o s 58 

( U ) 
u t c o s 70 

0 - 1 3 . 1 0 1 -13 .10 (Xè) - 1 3 . 2 8 + 0.18 + 0 .18 (X« + 0.33 - 0 . 1 5 - 0 . 1 5 ( X Ì ) - 0 . 1 5 ( X i ) 
10 - 1 2 . 8 5 0.985 - 1 2 . 6 5 - 1 3 . 0 5 - 0 . 2 0 + 0.17 0.285 - 0 . 0 8 5 - 0 . 0 5 4 - 0 . 0 2 9 
20 - 1 2 . 2 3 0.940 -11.50 - 1 2 . 4 8 + 0.25 + 0.12 0.165 + 0.085 - 0 . 0 1 5 - 0 . 0 6 5 

30 - 1 1 . 8 2 0.866 - 1 0 . 2 5 - 1 1 . 5 0 - 0 . 3 2 0 0 - 0 52 + 0.277 - 0 . 2 3 9 
40 - 1 0 . 2 5 0.766 - 7 . 8 3 - 1 0 . 1 5 - 0 . 1 0 + 0.05 - 0 . 1 6 5 + 0.065 - 0 . 0 6 1 - 0 . 0 1 1 
50 - 8 . 5 3 0.643 - 5 . 4 0 - 8 . 0 0 - 0 . 5 3 + 0.46 - 0 . 2 8 5 - 0 . 2 4 5 + 0.084 + 0.083 

60 - 6 . 8 2 0.5 - 3 . 4 1 - 6 . 6 4 - 0 . 1 8 + 0.18 - 0 . 3 3 + 0.15 + 0.075 + 0.037 
70 - Í . 7 0 0.342 - 1 . 6 1 - 4 . 5 4 - 0 . 1 6 + 0.14 - 0 . 2 8 5 + 0.125 + 0.123 - 0 . 0 7 9 
80 2.85 0.174 - 0 . 5 0 - 2 . 3 0 - 0 . 5 5 + 0.27 - 0 . 1 6 5 - 0 . 3 8 5 - 0 . 2 9 3 + 0.276 
90 0 0 0 0 0 0 0 0 0 0 

Total 

Multiplied by 2 

- 5 9 . 7 5 
- 6 . 6 4 
- 1 3 . 2 8 = a, 

+ 1.48 
+ 1.64 
+ 0.33 = a, 

+ 0.061 
+ 0.0068 
+ 0.014 = 0, 

- 0 . 1 0 1 
- 0 . 0 1 1 
- 0.022 = a, 
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COSINE SERIES u2. 

( 1 ) 

e 
( 2 ) 

UT 
( 3 ) 

U2 COS 2 0 

( 4 ) 
a z c o s 2 0 

( S ) ( 6 ) 

UICOS 4 0 

( 7 ) 
Í I 4 C O S 4 0 

( 8 ) 
ut 

u t c o s 6 « 

0 + 0.15 è( + 0.15) 0 + 0.15 K + 0.15) - 0 . 1 6 + 0.31 JK + 0.31) 
10 - 0 . 1 0 - 0 . 0 9 - 0 . 1 0 - 0 . 0 8 - 0 . 1 2 + 0.02 ' + 0 . 0 1 
20 - 0 . 1 7 - 0 . 1 3 - 0 . 1 7 - 0 . 0 3 - 0 . 0 3 - 0 . 1 4 + 0.07 

30 - 0 . 1 2 - 0 . 0 6 - 0 . 1 2 + 0.06 + 0.08 - 0 . 2 0 + 0.20 
40 + 0.30 + 0.05 + 0.30 - 0 . 2 9 + 0.15 + 0.15 - 0 . 0 7 
50 + 0.22 - 0 . 0 4 + 0.22 - 0 . 2 1 + 0.15 + 0.07 + 0.03 

60 + 0.02 - 0 . 0 1 + 0.02 - 0 . 0 1 + 0.08 - 0 . 0 6 - 0 . 0 6 
70 + 0.05 - 0 . 0 4 + 0.05 + 0.01 - 0 . 0 3 + 0.08 + 0.04 
80 - 0 . 1 0 + 0.09 - 0 . 1 0 - 0 . 0 8 - 0 . 1 2 + 0.02 - 0 . 0 1 
90 - 0 . 3 0 H + 0.30) 0 - 0 . 3 0 K+0.30) - 0 . 1 6 - 0 . 1 4 K+0.14) 

Total 
Divided by 

9 
Multiplied 

by 2 . . . . 

- 0 . 0 1 

-0 .001 

- 0 . 0 0 2 

- 0 . 7 1 

- 0 . 0 7 9 

- 0 . 1 5 8 
= «3 

+ 0.44 

+ 0.049 

+ 0.098 
= o, _ 

T A B L E I X . 

SINE SERIES v2. 

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) 
e V2 m SIN 26 DÌ SIN 26 VI VA SIN 4 0 BI SIN 4 0 vt v t SIN 6 0 

0 0 0 
10 + 0.20 + 0.07 - 0 . 2 0 + 0.40 + 0.26 + 0.22 + 0.18 + 0.16 
20 - 0 . 1 2 - 0 . 0 8 - 0 . 3 9 + 0.27 + 0.27 + 0.34 - 0 . 0 7 - 0 . 0 7 

30 - 0 . 4 7 - 0 . 4 1 - 0 . 5 2 + 0.05 + 0.04 + 0.30 - 0 . 2 5 + 0 
40 - 0 . 5 0 - 0 . 4 9 - 0 . 5 9 + 0.09 + 0.03 + 0.12 - 0 . 0 3 + 0.03 
50 - 0 . 3 7 - 0 . 3 6 - 0 . 5 9 + 0.22 -O.OS - 0 . 1 2 + 0.34 - 0 . 3 0 

60 - 0 . 6 2 - 0 . 5 4 - 0 . 5 2 - 0 . 1 0 + 0.0Ö - 0 . 3 0 + 0.20 0 
70 - 0 . 9 5 - 0 . 6 1 - 0 . 3 9 - 0 . 5 6 + 0.55 - 0 . 3 4 - 0 . 2 2 - 0 . 1 9 
80 - 0 . 8 0 - 0 . 2 7 - 0 . 2 0 - 0 . 6 0 + 0.39 + 0.22 - 0 . 3 8 - 0 . 3 3 
90 0 0 

Total - 2 . 69 + 1.55 - 0 . 7 0 
Divided bv i - 0 . 3 0 + 0.172 - 0 . 0 7 8 
Divided by 2 - 0 . 6 0 + 0.344 - 0 . 1 5 6 

= 6 2 = 6, = 6 , 

T A B L E V i l i . 
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a 0 = + 8.75; 

ai = - 1 3 . 2 8 ; &i = - 3 . 3 3 ; 
a2 — - 0 . 0 0 1 ; 6 2 = - 0 . 6 0 2 ; 

0-3 = - 0 . 3 3 ; 6 3 = - 0 . 1 4 ; 

a 4 = - 0 . 1 5 4 ; &4 = +0.386; 

a 5 = +0.014; 65 = - 0 . 0 9 0 ; 

a 6 = + 0.100; b6 = - 0 . 1 5 4 ; 

a 7 = - 0 . 0 2 2 ; b7 = - 0 . 0 8 2 ; 

or, transforming by the binomial, a ncosn0+o nsinn0 = c c o s 

(nd—jn), by substituting c„= V a n

2 + 6 „ 2 a n d t a n r n = — gives, 
a n 

a 0 = + 8 . 7 5 ; 
C l = - 1 3 . 6 9 ; n = + 14.15°; or n = +14.15°; 

C o = - 0 . 6 0 2 ; 72= +89.9°; or 72 
2 +44.95°+180n; 

C3 = +0.359; n= - 2 3 . 0 ° ; or 7s 
3 - 7 . 7 + 1 2 0 n = + 112.3+120w ; 

C 4 = - 0 . 4 1 6 ; r*= - 6 8 . 2 ° ; or 7i 
4 - 1 7 . 0 5 + 9 0 n = + 7 2 . 9 5 + 9 0 m ; 

c 5 = +0.091; r s= -81 .15° ; or 75 
5 -16 .23+72n=+55.77+72w) ; 

C 6 = +0.184; re= - 5 7 . 0 ° ; or 76 
6 - 9 . 5 + 6 0 n = +50.5+60m; 

C 7 = - 0 . 0 8 5 ; T7= +75.0°; or 77 
7 + 10.7+51.4n, 

where n and m may be any integer number. 

Table IV gives the resolution of the periodic temperature 
function into the constant term ao, the odd series y\ and the 
even series y2. 

Table V gives the resolution of the series t/i and y2 into 
the cosine and sine series ui, vi, u2, v2. 

Tables VI to I X give the resolutions of the series u\, v\, u2, 
v2, and thereby the calculation of the constants an and b„. 

go. The resolution of the temperature wave, up to the 
7th harmonic, thus gives the coefficients : 
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Since to an angle r„, any multiple of 2iz or 360 deg. may 

be added, any multiple of may be added to the angle 

and thus the angle may be made positive, etc. 

9 1 . The equation of the temperature wave thus becomes: 

y = 8 .75-13 .69 cos ( 0 - 1 4 . 1 5 ° ) - 0 . 6 0 2 cos 2(0-44 .95°) 

- 0 . 3 5 9 cos 3 ( 0 - 5 2 . 3 ° ) - 0 . 4 1 6 cos 4 (0-72 .95°) 

- 0 . 0 9 1 cos 5 ( 0 - 1 9 . 7 7 ° ) - 0 . 1 8 4 cos 6 (0 -20 .5° ) 

- 0 . 0 8 5 cos 7 ( 0 - 1 0 . 7 ° ) ; (a) 

or, transformed to sine functions by the substitution, 

cos 6 0 = — sin (o>—90°): 

y = 8.75 +13.69 sin (0-104.15°) +0.602 sin 2 (0 -89 .95° ) 

+0.359 sin 3 (0 -82 .3° ) +0.416 sin 4 (0-95 .45°) 

+0.091 sin 5 (0 -109 .77° )+0 .184 sin 6 (0 -95 .5° ) 

+0.085 sin 7 ( 0 - 7 5 ° ) . (6) 

The cosine form is more convenient for some purposes, 
the sine form for other purposes. 

Substi tut ing /? = 0 - 1 4 . 1 5 ° ; or, 5 = 0 - 1 0 4 . 1 5 ° , these two 
equations (a) and (b) can be transformed into the form, 

2/ = 8 .75-13 .69 cos ,3-0.62 cos2Q5-30.8°)-0.359 cos3G°-38.15°) 

- 0 . 4 1 6 cos 4(ß-58.8°) - 0 . 0 9 1 cos 5(/?-5.6°) 

- 0 . 1 8 4 cos 6 0 ? - 6 . 3 5 ° ) - 0 . 0 8 5 cos 7 ( 0 - 4 8 . 0 ° ) , (c) 

and 

y = 8.75+13.69 sin 5+0.602 sin 2(3+14.2°)+0.359 sin 3(3+ 21.85°) 

+0.416 sin 4(5+8.7°) +0.91 sin 5 ( 5 - 5 . 6 ° ) 

+0.184 sin 6(5+8.65°) +0.085 sin 7(5+29.15°). (d) 
The periodic variation of the temperature y, as expressed 

by these equations, is a result of the periodic variation of the 
thermomotive force; tha t is, the solar radiation. This lat ter 
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is a minimum on Dec. 22d, t ha t is, 9 time-degrees before the 
zero of 0, hence may be expressed approximately b y : 

z = c-h cos (0+9° ) ; 

or substituting ß respectively 5 for 0: 
z = c-h cos (0+23.15°) 

= c+h sin (5+23.15°). 

This means: the maximum of y occurs 23.15 deg. after the 
maximum of z; in other words, the temperature lags 23.15 deg., 
or about ^ period, behind the thermomotive force. 

Near 5 = 0 , all the sine functions in (d) are increasing; tha t 
is, the temperature wave rises steeply in spring. 

Near 5 = 180 deg., the sine functions of the odd angles are 
decreasing, of the even angles increasing, and the decrease of 
the temperature wave in fall thus is smaller than the increase 
in spring. 

The fundamental wave greatly preponderates, with ampli
tude ci = 13.69. 

In spring, for 5 =—14.5 deg., all the higher harmonics 
rise in the same direction, and give the sum 1.74, or 12.7 
per cent of the fundamental. In fall, for 5 = — 14.5+*, the 
even harmonics decrease, the odd harmonics increase the 
steepness, and give the sum —0.67, or —4.9 per cent. 

Therefore, in spring, the temperature rises 12.7 per cent 
faster, and in autumn it falls 4.9 per cent slower than corre
sponds to a sine wave, and the difference in the rate of tempera
ture rise in spring, and temperature fall in autumn thus is 
12.7+4.9 = 17.6 per cent. 

The maximum rate of temperature rise is 90—14.5 = 75.5 
deg. behind the temperature minimum, and 23.15+75.5 = 98.7 
deg. behind the minimum of the thermomotive force. 

As most periodic functions met by the electrical engineer 
are symmetrical alternating functions, t ha t is, contain only 
the odd harmonics, in general the work of resolution into a 
trigonometric series is very much less than in above example. 
Where such reduction has to be carried out frequently, it is 
advisable to memorize the trigonometric functions, from 10 
to 10 deg., up to 3 decimals; t ha t is, within the accuracy of 
the slide rule, as thereby the necessity of looking up tables is 
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eliminated and the work therefore done much more expe
ditiously. In general, the slide rule can be used for the calcula
tions. 

As an example of the simpler reduction of a symmetrical 
al ternating wave, the reader may resolve into its harmonics, 
up to the 7th, the exciting current of the transformer, of which 
the numerical values are given, from 10 to 10 deg. in Table X . 

C. REDUCTION OF TRIGONOMETRIC SERIES BY POLY
PHASE RELATION. 

02. In some cases the reduction of a general periodic func
tion, as a complex wave, into harmonics can be carried out 
in a much quicker manner by the use of the polyphase equation, 
Chapter I I I , Par t A (23). Especially is this t rue if the com
plete equation of the trigonometric series, which represents the 
periodic function, is not required, but the existence and the 
amount of certain harmonics are to be determined, as for 
instance whether the periodic function contain even harmonics 
or third harmonics, and how large they may be. 

This method does not give the coefficients o„, bn of the 
individual harmonics, but derives from the numerical values 
of the general wave the numerical values of any desired 
harmonic. This harmonic, however, is given together with all 
its multiples; t ha t is, when separating the third harmonic, 
in it appears also the 6th, 9th, 12th, etc. 

In separating the even harmonics j/2 from the general 
wave y, in paragraph 84, by taking the average of the values 
of y for angle 6, and the values of y for angles (d+n), this 
method has already been used. 

Assume tha t to an angle 0 there is successively added a 
constant quant i ty a, t h u s : 6; 04-a; 0 + 2 a ; 6+Sa; 0 + 4a, 
etc., until the same angle 0 plus a multiple of 2r. is reached; 

2l7l7Z 
0 + na=0+2m7t; t ha t is, a = ; or, in other words, a is 

1/n of a multiple of 2TZ. Then the sum of the cosine as well 
as t h e sine functions of all these angles is zero : 

cos 0 + c o s ( 0 + a ) + c o s ( 0 + 2 a ) + c o s ( 0 + 3 a ) + . 
+COS (0 + [ n - l ] a ) = O ; . . (1) 
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sin 0+s in ( 0 + a ) + s i n (0+2a) +sin ( 0 + 3 a ) + . . . 
+s in ( 0 + [ n - l ] a ) = O , . . (2) 

(3) 

These equations (1) and (2) hold for all values of o, except for 
a - 2n, or a multiple thereof. For a = 2n obviously all the terms 
of equation (1) or (2) become equal, and the sums become 
n cos 0 respectively n sin 0. 

Thus, if the series of numerical values of y is divided into 

n successive sections, each covering — degrees, and these 

sections added together, 

In this sum, all the harmonics of the wave y cancel by equations 
(1) and (2), except the n th harmonic and its multiples, 

a„ cos nd+bn sin nO; a2n cos 2nd+b2n sin 2nd, etc. 

in the latter all the terms of the sum (4) are equal; tha t is, 
the sum (4) equals n times the n t h harmonic, and its multiples. 
Therefore, the n th harmonic of the periodic function y, together 
with its multiples, is given by 

gives the sum of all the even harmonics; tha t is, gives t h e 
second harmonic together with its multiples, the 4th, 6th, etc. , 
as seen in paragraph 7, and for, n = 3, 

y(0)+y(o+

2i)+y(o+2^)+y(e+s%)+... 

(4) 

2/n 

For instance, for n = 2, 

2/2 = i l 2/(0)+2/(0+*)!, 

4 Y 
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gives the third harmonic, together with its multiples, the 6th, 
9th, etc. 

This method does not give the mathematical expression 
of the harmonics, but their numerical values. Thus, if the 
mathematical expressions are required, each of the component 
harmonics has to be reduced from its numerical values to 
the mathematical equation, and the method then usually offers 
no advantage. 

I t is especially suitable, however, where certain classes of 
harmonics are desired, as the third together with its multiples. 
In this case from the numerical values the effective value, 
tha t is, the equivalent sine wave may be calculated. 

93. As illustration may be investigated the separation of 
the third harmonics from the exciting current of a transformer. 

TABLE X 

A 

(i) e (2) 
i 

(3) 
e 

(4) 
I 

(5) 
0 

(6) 
t 

(7) 
Ú 

0 
10 
20 

+ 24.0 
+ 20.0 
+ 12 

120 
130 
140 

- 1 5 . 1 
- 1 6 . 5 
- 1 8 . 5 

240 
250 
260 

+ 8.5 
+ 10 
+ 11 

+ 5.8 
+ 4.5 
+ 1.5 

30 
40 
50 

+ 4 
- 1.5 
- 6.5 

150 
160 
170 

- 2 1 
- 2 2 . 7 
- 2 3 . 7 

270 
280 
290 

+ 12 
+ 13 
+ 14 

- 1 . 7 
- 3 . 7 
- 5 . 4 

60 - 8.5 180 - 2 4 300 + 15.1 - 5 . 8 

B 

3« il 3« « 3« tj <» 

0 
30 
60 

+ 5.8 
+ 4.5 
+ 1.5 

120 
150 
180 

- 3 . 7 
- 5 . 4 ! 
— 5.8 

240 
270 
300 

- 1 . 5 
+ 1.7 
+ 3.7 

+ 0.2 
+ 0.3 
- 0 . 2 

I n table X A, are given, in columns 1, 3 , 5, the angles 0, 
from 10 deg. to 10 deg., and in columns 2, 4, 6, the correspond
ing values of the exciting current i, as derived by calculation 
from the hysteresis cycle of the iron, or by measuring from the 
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photographic film of the oscillograph. Column 7 then gives 
one-third the sum of columns 2, 4, and 6, tha t is, the third har
monic with its overtones, i3. 

To find the 9th harmonic and its overtones ig, the same 
method is now applied to ¿3, for angle 36. This is recorded 
in Table X B. 

In Fig. 46 are plotted the total exciting current i, its third 
harmonic i3, and the 9th harmonic ig. 

This method has the advantage of showing the limitation 
of the exactness of the results resulting from the limited num-

F I G . 4 6 . 

ber of numerical values of i, on which the calculation is based. 
Thus, in the example, Table X, in which the values of i are 
given for every 10 deg., values of the third harmonic are derived 
for every 30 deg., and for the 9th harmonic for every 90 deg.; 
t ha t is, for the latter, only two points per half wave are deter
minable from the numerical data, and as the two points per half 
wave are just sufficient to locate a sine wave, it follows that 
within the accuracy of the given numerical values of i, the 
9th harmonic is a sine wave, or in other words, to determine 
whether still higher harmonics than the 9th exist, requires for 
i more numerical values than for every 10 deg. 

As further practice, the reader may separate from the gen-



138 ENGINEERING MATHEMATICS. 

eral wave of current, io in Table X I , the even harmonics i2, 
by above method, 

Í 2 = ¿{io(0)+t'o(0+18O deg.)}, 

and also the sum of the odd harmonics, as the residue, 

t'i = i0 — t'a, 

then from the odd harmonics ii may be separated the third 
harmonic and i ts multiples, 

¿3 = M¿i(0) +ii(0 +120 deg. ) + i i ( 0 + 2 4 0 deg.)}, 

and in the same manner from i3 may be separated its third 
harmonic ; t ha t is, i9. 

Furthermore, in the sum of even harmonics, from i2 may 
again be separated its second harmonic, i4) and its multiples, 
and therefrom, is, and its third harmonic, i 6 , and its multiples, 
thus giving all the harmonics up to the 9th, with the exception 
of the 5th and the 7th. These latter two would require plotting 
the curve and taking numerical values a t different intervals, 
so as to have a number of numerical values divisible by 5 or 7. 

I t is further recommended to resolve this unsymmetrical 
exciting current of Table X I into the trigonometric series by 
calculating the coefficients o„ and bn, up to the 7th, in the man
ner discussed in paragraphs 6 to 8. 

T A B L E X I 

e 10 » io e to e IO 

0 + 95.7 90 - 2 6 7 180 - 3 4 3 270 - 3.3 
10 + 78.7 100 - 2 7 3 190 - 2 7 3 280 - 1.8 
20 + 53.7 110 - 2 8 1 200 - 1 6 8 290 + 1.2 

30 + 23.7 120 - 2 8 8 210 - 1 1 3 300 + 4.7 
40 - 2.3 130 - 2 9 3 220 - 8 3 310 + 10.7 
50 - 1 6 . 3 140 - 2 9 8 230 - 7 3 320 + 22.7 

60 - 2 2 . 8 150 - 3 1 240 - 6 3 330 + 41.7 
70 - 2 4 . 3 160 - 3 2 6 250 - 5 3 340 + 65.7 
80 - 2 5 . 8 170 - 3 3 8. 260 - 4 3 350 + 85.7 
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D. CALCULATION OF TRIGONOMETRIC SERIES FROM 
OTHER TRIGONOMETRIC SERIES. 

94. An hydraulic generating station has for a long time been 
supplying electric energy over moderate distances, from a num
ber of 750-kw. 4400-volt 60-cycle three-phase generators. The 
station is to be increased in size by the installation of some 
larger modern three-phase generators, and from this station 
6000 kw. are to be transmitted over a long distance transmis
sion line at 44,000 volts. The transmission line has a length 
of 60 miles, and consists of three wires No. O B . & S. with 5 
ft. between the wires. 

The question arises, whether during times of light load the 
old 750-kw. generators can be used economically on the trans
mission line. These old machines give an electromotive force 
wave, which, like tha t of most earlier machines, differs con
siderably from a sine wave, and it is to be investigated, whether, 
due to this wave-shape distortion, the charging current of the 
transmission Une will be so greatly increased over the value 
which it would have with a sine wave of voltage, as to make 
the use of these machines on the transmission line uneconom
ical or even unsafe. 

Oscillograms of these machines, resolved into a trigonomet
ric series, give for the voltage between each terminal and the 
neutral, or the Y voltage of the three-phase system, the equa
tion : 

e = e 0 { s m 0 - 0 . 1 2 sin ( 3 0 - 2 . 3 ° ) - O . 2 3 sin ( 5 0 - 1 . 5 ° ) 
+ 0 . 1 3 sin ( 7 0 - 6 . 2 ° ) ) . . (1) 

In first approximation, the line capacity may be considered 
as a condenser shunted across the middle of the line; tha t is, 
half the line resistance and half the line reactance is in series 
with the line capacity. 

As the receiving apparatus do not utilize the higher har
monics of the generator wave, when using the old generators, 
their voltage has to be transformed up so as to give the first 
harmonic or fundamental of 44,000 volts. 

44,000 volts between the lines (or delta) gives 44,000 -+V3 = 
25,400 volts between line and neutral. This is the effective 
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value, and the maximum value of the fundamental voltage 
wave thus i s : 2 5 , 4 0 0 x ^ 2 = 36,000 volts, or 36 kv. ; t ha t is, 
c 0 = 3 6 , and 

e = 36)sin 0 - 0 . 1 2 sin ( 3 0 - 2 . 3 ° ) - O . 2 3 sin ( 5 0 - 1 . 5 ° ) 

+ 0 . 1 3 sin ( 7 0 - 6 . 2 ° ) j , . (2) 

would be the voltage supplied to the transmission line a t the 
high potential terminals of the step-up transformers. 

From the wire tables, the resistance per mile of No. 0 B. & S. 
copper line wire is r 0 = 0 .52 ohm. 

The inductance per mile of wire is given by the formula: 

I. 

L0 = 0.7415 log ^ + 0.0805mh, . . . . (3) 

where I, is t h e distance between the wires, and lr the radius of 
the wire. 

In the present case, this gives lt = 5 ft. = 6 0 in. Z r =0.1625in . 
Li) = 1.9655 mh., and, herefrom it follows t ha t the reactance, at 
/ = 60 cycles is 

x 0 = 2nf L0 = 0 .75 ohms per mile (4) 

The capacity per mile of wire is given by the formula: 

„ 0.0408 , 
C 0 = j--mf.: (5) 

l o g ¿ 
hence, in the present case, C0 = 0 . 0 1 5 9 mf., and the condensive 
reactance is derived herefrom as : 

*« = 7T^rr = 166000 ohms; . . . . (6) 

60 miles of line then give the condensive reactance, 

x e = | ^ = 2 7 7 0 ohms; 

30 miles, or half the line (from the generating station to the 
middle of the line, where the line capacity is represented by a 
shunted condenser) give: the resistance, r = 3 0 r 0 = 15.6 ohms; 
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Differentiating this equation, for the purpose of eliminating 
the integral, gives 

de (Pi di 
d0 = Xd02 + rdd+XcV' 

or 

^ = 2 2 . 5 ^ + 1 0 . 6 ^ + 27701. 
dO dO2 ad 

The voltage e is given by (2), which equation, by resolvin, 
the trigonometric functions, gives 

f = 36 sin 0 - 4 . 3 2 sin 3 0 - 8 . 2 8 sin 5 0 + 4 . 6 4 sin 70 
+ 0 . 1 8 cos 3 0 + 0 . 2 2 cos 5 0 - 0 . 5 0 cos 70; . (9) 

hence, differentiating, 

de 
5^ = 36 cos 0 - 1 2 . 9 6 cos 3 0 - 4 1 . 4 cos 50+32.5 cos 70 
dO 

- 0 . 5 4 sin 3 0 - 1 . 1 sin 50+3 .5 sin 70. . (10) 

Assuming now for the current i a trigonometric series with 
indeterminate coefficients, 

i = di cos 0 +a.} cos 30 + a 5 cos 50 + a 7 cos 70 
4 & i sin 0+63 sin 30 + b s sin 50 +b7 sin 70, . (11) 

the inductive reactance, z = 30xn = 22.5 ohms, and the equiva
lent circuit of the line now consists of the resistance r, inductive 
reactance x and condensive reactance xc, in series with each 
other in the circuit of the supply voltage e. 

95. If 1 = current in the line (charging current) the voltage 
consumed by the line resistance r is ri. 

The voltage consumed by the inductive reactance x is x—\ 

the voltage consumed by the condensive reactance xc is x.J'idO, 

and therefore, 
di i 

e = x-^Q+ri+xcl idd (7) 
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ai = 13.12 

6i = 0.07 

a 3 = - 5.03 

6 3 = - 0.30 

a 5 = - 1 8 . 7 2 

6 5 = - 1 . 1 5 

a 7 = 19.30 

6 7 = 3.37 

(13) 

hence, 

ï = 1 3 . 1 2 c o s 0 - 5 . 0 3 c o s 3 0 - 1 8 . 7 2 c o s 50 + 19.30 cos 70 

+ 0 . 0 7 s i n 0 - O . 3 O s i n 3 0 - 1 . 1 5 sin 5 0 + 3 . 3 7 sin 70 

= 13.12 cos ( 0 - O . 3 ° ) - 5 . O 4 cos ( 3 0 - 3 . 3 ° ) 

- 1 8 . 7 6 cos ( 5 0 - 3 . 6 ° ) + 1 9 . 5 9 cos ( 7 0 - 9 . 9 ° ) . 

Substitution of (10) and (11) into equation (8) must give an 
identity, from which equations for the determination of an and 
6 n are derived; t ha t is, since the product of subst i tut ion must 
be an identity, all the factors of cos 0, sin 0, cos 30, sin 30, 
etc., must vanish, and this gives the eight equations: 

36 = 2 7 7 0 o i + 1 5 . 6 0 1 - 22.5on;' 

0 = 2 7 7 0 0 ! - 1 5 . 6 a i - 22.50!; 

- 1 2 . 9 6 = 2770a 3 + 4 6 . 8 6 3 - 202 .5o 3 ; 

- 0.54 = 2770& 3 - 4 6 . 8 a . 3 - 202.5b 3 : 
' Ï- (12) 

- 4 1 . 4 = 2 7 7 0 a 5 + 7 8 6 5 - 562 .5a s ; 

- 1.1 = 27706s- 7 8 a 5 - 56.256 5 ; 

32 .5 = 2770a 7 + 1 0 9 . 2 6 7 - 1 1 0 2 . 5 a 7 ; 

3 .5 = 2 7 7 0 6 7 - 1 0 9 . 2a 7 - 1 1 0 2 . 5 6 7 . . 

Resolved, these equations give 

http://46.8a.3-
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96. The effective value of this current is given as the square 
root of the sum of squares of the effective values of the indi
vidual harmonics, thus : 

As the voltage between line and neutral is 25,400 effective, 
this gives Q = 25,400 X 21.6 = 540,000 volt-amperes, or 540 kv.-
amp. per line, thus a total of 3Q = 1620 kv.-amp. charging cur
rent of the transmission line, when using the e.m.f. wave of 
these old generators. 

I t thus would require a minimum of 3 of the 750-kw. 
generators to keep the voltage on the line, even if no power 
whatever is delivered from the line. 

If the supply voltage of the transmission line were a perfect 
sine wave, it would, at 44,000 volts between the lines, be given 

which is the fundamental, or first harmonic, of equation (9). 
Then the current i would also be a sine wave, and would be 

given by 

by 
ei = 3 6 sin 0, (15) 

x'i = ai cos 9+bi sin 6, 

= 13.12 cos (9+0.07 sin 6, 

= 13.12 cos (0 -0 .3 ° ) , 

(16) 

and its effective value would be 

h 
13.12 

9.3 amp. (17) 

This would correspond to a kv.-amp. input to the line 

3Qi = 3 X 2 5 . 4 X 9 . 3 = 710 kv.-amp. 

The distortion of the voltage wave, as given by equation (1), 
thus increases the charging volt-amperes of the line from 710 
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kv.-amp. to 1620 kv.-amp. or 2.28 times, and while with a sine 
wave of voltage, one of the 750-kw. generators would easily be 
able to supply the charging current of the line, due to the 

e 

F I G . 4 7 . 

wave shape distortion, more than two generators are required. 
I t would, therefore, not be economical t o use these generators 
on the transmission 'yie, if they can be used for any other 
purposes, as short-distance distribution. 

F I G . 4 8 . 

In Figs. 47 and 48 are plotted the voltage wave and the 
current wave, from equations (9) and (14) respectively, and 
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the numerical values, from 10 deg. to 10 deg., recorded in 
Table X I I . 

In Figs. 47 and 48 the fundamental sine wave of voltage 
and current are also shown. As seen, the distortion of current 
is enormous, and the higher harmonics predominate over the 
fundamental. Such waves are occasionally observed as charg
ing currents of transmission lines or cable systems. 

97. Assuming now tha t a reactive coil is inserted in series 
with the transmission line, between the step-up transformers 
and the line, what will be the voltage at the terminals of this 
reactive coil, with the distorted wave of charging current 
traversing the reactive coil, and how does it compare with the 
voltage existing with a sine wave of charging current? 

Let L=induc tance , thus x=2xfL =reactance of the coil, 
and neglecting its resistance, the voltage a t the terminals of 
the reactive coil is given by 

' — < 1 8 > 

Substituting herein the equation of current, (11), gives 

e' = x{ai sin 0 + 3 a 3 sin 3 0 + 5 a s sin 56+7a7 sin 76 1 

- 6 1 cos 6-3Ò3 c o s 3 6 - 5 6 5 c o s 5 6 - 7 b 7 cos 76}; J 

hence, substituting the numerical values (13), 

e' = x| 13.12 sin 0 - 1 5 . 0 9 sin 3 0 - 9 3 . 6 sin 50+135.1 sin 70 1 

- 0 . 0 7 cos 0 +0.90 cos 30+5 .75 cos 5 0 - 2 3 . 6 cos 70 j j 
} (-0) 

= xj 13.12 sin ( 0 - 0 . 3 ° ) - 1 5 . 1 2 sin (30-3 .3°) 

- 9 3 . 8 sin (50 -3 .6° )+139 .1 sin (70-9 .9° ) j . 

This voltage gives the effective value 

(10) 

E' = xVi{ 13.12 2 +15.12 2 + 93.8 2 +139 .1 2 ) = 119.4.r, 

while the effective value with a sine wave would be from (17), 

£ i ' = x / i = 9 . 3 x ; 

nee, the voltage across the reactance x has been increased 
. . . 8 times by the wave distortion. 
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The instantaneous values of the voltage e' are given in the 
last column of Table X I I , and plotted in Fig. 49, for x = l . 
As seen from Fig. 49, the fundamental wave has practically 

FIG. 49. 

vanished, and the voltage wave is the seventh harmonic, modi
fied by the fifth harmonic. 

T A B L E X I I 

1 t t e' 6 e t 

0 — 0.10 + 8.67 - 17 90 27.41 - 4.15 - 2 0 0 
10 + 2.23 + 5.30 + 46 100 31.77 + 26.19 - 1 0 6 
20 3.74 - 0.86 + 3 110 40.57 + 24.99 + 119 

30 7.47 + 7.39 + 131 120 42.70 - 8.10 + 1S2 
40 17.35 + 30.39 - 1 1 6 130 33.14 - 3 8 . 7 9 + 93 
50 31.70 + 38.58 + 36 140 IS.03 - 3 6 . 6 5 - 96 

60 42.06 + 15.66 + 167 150 6.99 -13 .41 - 1 3 8 
70 40.33 -19 .01 + 159 160 2.88 + 2.43 - 31 
80 32.87 -29 .13 - 54 170 1.97 - 1.00 + 54 
90 27.41 - 4.15 - 2 0 0 180 + 0.10 - 8.67 + 17 



CHAPTER IV. 

MAXIMA AND MINIMA. 

98. In engineering investigations the problem of determin
ing the maxima and the minima, that is, the extrema of a 
function, frequently occurs. For instance, the output of an 
electric machine is to be found, at which its efficiency is a max
imum, or, it is desired to determine that load on an induction 
motor which gives the highest power-factor; or, tha t voltage 
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FIG. 50. Graphic Solution of Maxima and Minima. 

which makes the cost of a transmission line a minimum; or, 
tha t speed of a steam turbine which gives the lowest specific 
steam consumption, etc. 

The maxima and minima of a function, y=f(x), can be found 
by plotting the function as a curve and taking from the curve 
the values x, y, which give a maximum or a minimum. For 
instance, in the curve Fig. 50, maxima are at Pi and P 2 , minima 
a t Ps and P4. This method of determining the extrema of 
functions is necessary, if the mathematical expression between 

1 4 7 
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x and y, t ha t is, the function y=f(x), is unknown, or if the 
function y=f(x) is so complicated, as to make the mathematical 
calculation of the extrema impracticable. As examples of 
this method the following may be chosen: 
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FIG. 51. Magnetization Curve. 

Example i . Determine tha t magnetic density B , at which 
the permeability u of a sample of iron is a maximum. The 
relation between magnetic field intensity H , magnetic density 
B and permeability u cannot be expressed in a mathematical 
equation, and is therefore usually given in the form of an 
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F I G . 52. Permeability Curve. 

empirical curve, relating B and H , as shown in Fig. 51. From 
this curve, corresponding values of B and H are taken, and their 

ratio, t ha t is, the permeability u = — , plotted against B a s abscissa. 
a 

This is done in Fig. 52. Fig. 52 then shows t h a t a maximum 
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FIG. 53. Power-factor Maximum of Induction Motor. 

table corresponding values of power output P and power-
factor cos 6 are taken and plotted in a curve, Fig. 53, arid the 
maximum derived from this curve is P = 4120, cos 6 = 0.904. 

For the purpose of determining the maximum, obviously 
not the entire curve needs to be calculated, but only a short 
range near the maximum. This is located by trial. Thus 
in the present instance, P and cos 6 are calculated for s = 0.1 
and s = 0.2. As the latter gives lower power-factor, the maximum 
power-factor is below s = 0.2. Then s = 0.05 is calculated and gives 
a higher value of cos 6 than s = 0.1; tha t is, the maximum is 
W o w s = 0.1. Then s = 0.02 is calculated, and gives a lower 
value of cos 0 t han s = 0.05. The maximum value of cos 6 
thus lies between s = 0.02 and s = 0.1, and only the part of the 
curve between s = 0.02 and s = 0.1 needs to be calculated for 
the determination of the maximum of cos 0, as is done in Fig. 53. 

99. When determining an extremum of a function y=f(x). 
by plotting it as a curve, the value of x, at which the extreme 

occurs at point p^, for £ = 10.2 kilolines, fi = 1340, and minima 
a t the starting-point P2, for JB=0, /t = 370, and also for ¿ = o o , 
where by extrapolation p = l. 

Example 2. Find that output of an induction motor 
which gives the highest power-factor. While theoretically 
an equation can be found relating output and power-factor 
of an induction motor, the equation is too complicated for use. 
The most convenient way of calculating induction motors is 
to calculate in tabular form for different values of slip s, the 
torque, output , current, power and volt-ampere input, efficiency, 
power-factor, etc., as is explained in "Theoret ical Elements 
of Electrical Engineering," third edition, p. 303. From this 
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occurs, is more or less inaccurate, since at the extreme the 
curve is horizontal. For instance, in Fig. 53, the maximum 
of the curve is so flat t ha t the value of power P, for which 
cos 0 became a maximum, may be anywhere between P = 4000 
and P=4300, within the accuracy of the curve. 

In such a case, a higher accuracy can frequently be reached 
by not a t tempting to locate the exact extreme, but two points 
of the same ordinate, on each side of the extreme. Thus in 
Fig. 53 the power P 0 , a t which the maximum power factor 
cos 0 = 0.904 is reached, is somewhat uncertain. The value of 
power-factor, somewhat below the maximum, cos 0 = 0.90, 
is reached before the maximum, a t Pi =3400, and after the 
maximum, a t P 2 = 4840. The maximum then may be calculated 
as half-way between Pi and P 2 , tha t is, a t Po = i{Pi+P2Ì = 
4120 watts . 

This method gives usually more accurate results, but is 
based on the assumption tha t the curve is symmetrical on 
both sides of the extreme, t ha t is, falls off from the extreme 
value a t the same rate for lower as for higher values of the 
abscissas. Where this is not the case, this method of inter
polation does not give the exact maximum. 

Example 3 . The efficiency of a steam turbine nozzle, 
t ha t is, the ratio of the kinetic energy of the steam jet to the 
energy of the steam available between the two pressures between 
which the nozzle operates, is given in Fig. 54, as determined by 
experiment. As abscissas are used the nozzle mouth opening, 
t ha t is, the widest part of the nozzle a t the exhaust end, as 
fraction of that corresponding to the exhaust pressure, while 
the nozzle throat , t ha t is, the narrowest part of the nozzle, is 
assumed as constant. As ordinates are plotted the efficiencies. 
This curve is not symmetrical, but falls off from the maximum, 
on the sides of larger nozzle mouth, far more rapidly than on 
the side of smaller nozzle mouth. The reason is tha t with 
too large a nozzle mouth the expansion in the nozzle is carried 
below the exhaust pressure p2, and steam eddies are produced 
by this overexpansion. 

The maximum efficiency of 94.6 per cent is found a t the point 
P 0 , a t which the nozzle mouth corresponds t o the exhaust 
pressure. If, however, the maximum is determined as mid
way between two points Pi and P 2 , on each side of the maximum, 
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a t which the efficiency is the same, 93 per cent, a point Po ' is 
obtained, which lies on one side of the maximum. 

With unsymmetrical curves, the method of interpolation 
thus does not give the exact extreme. For most engineering 
purposes this is rather an advantage. The purpose of deter
mining the extreme usually is to select the most favorable 
operating conditions. Since, however, in practice the operating 
conditions never remain perfectly constant, but vary to some 
extent , the most favorable operating condition in Fig. 54 is 
not tha t where the average value gives the maximum efficiency 
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FIG. 54. Steam Turbine Nozzle Efficiency; Determination of Maximum. 

(point Po), but the most favorable operating condition is that , 
where the average efficiency during the range of pressure, occurr
ing in operation, is a maximum. 

If the steam pressure, and thereby the required expansion 
ratio, tha t is, the theoretically correct size of nozzle mouth, 
should vary during operation by 25 per cent from the average, 
when choosing the maximum efficiency point Po as average, 
the efficiency during operation varies on the part of the curve 
between P i (91.4 per cent) and P 2 (85.2 per cent), thus averaging 
lower than by choosing the point Po'(6.25 per cent below P 0 ) 
as average. In the latter case, the efficiency varies on the 
part of the curve from the Pi ' (90.1 per cent) to P 2 ' (90 .1 per 
cent) . (Fig. 55.) 
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Thus in apparatus design, when determining extrema of 
a function y=f(x), to select them as operating condition, 
consideration must be given to the shape of the curve, and 
where the curve is unsymmetrical, the most efficient operating 
point may not lie a t the extreme, bu t on tha t side of it at which 
the curve falls off slower, the more so the greater the range of 
variation is, which may occur during operation. This is not 
always realized. 

ioo . If the function y=f(x) is plotted as a curve, Fig. 
50, at the extremes of the function, the points P i , P 2 , P3, P4 
of curve Fig. 50, the tangent on the curve is horizontal, since 
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F I G . 55. Steam Turbine Nozzle Efficiency; Determination of Maximum. 

at the extreme the function changes from rising to decreasing 
(maximum, P i and P2), or from decreasing to increasing (min
imum, P 3 and P4), and therefore for a moment passes through 
the horizontal direction. 

I n general, t he tangent of a curve, as t ha t in Fig. 50, is the 
line which connects two points P ' and P" of the curve, which 
are infinitely close together, and, as seen in Fig. 50, the angle 
0, which this tangent P'P" makes with the horizontal or X-axis, 
t hus is given by : 

. ñ P"Q dy 
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At the extreme, the tangent on the curve is horizontal, 
tha t is, 4-0 = 0, and, therefore, it follows tha t at an extreme 
of the function, 

y =/(*), (i) 

£- « 
The reverse, however, is not necessarily the case; tha t is, 

dy 
if a t a point x, y : ^ = u\- this point may not be an extreme; 
tha t is, a maximum or minimum, but may be a horizontal 
inflection point, as points P 5 and P 6 are in Fig. 50. 

With increasing x, when passing a maximum (Pi and P2, 
Fig. 50), y rises, then stops rising, and then decreases again. 
When passing a minimum (P3 and P 4 ) y decreases, then stops 
decreasing, and then increases again. When passing a horizontal 
inflection point, y rises, then stops rising, and then starts rising 
again, at P5, or y decreases, then stops decreasing, but then 
starts decreasing again (at P 6 ) . 

The points of the function y=f(x), determined by the con-
dy 

dition, ^ = 0, thus require further investigation, whether they 
represent a maximum, or a minimum, or merely a horizontal 
inflection point. 

This can be done mathematically: for increasing x, when 
passing a maximum, tan 6 changes from positive to negative; 

tha t is, decreases, or in other words, ^ (tan 0)<O. Since 

dv d?v 
tan (9 = it thus follows that at a maximum ^ < 0. Inversely, 

at a minimum tan 6 changes from negative to positive, hence 
d d?y 

increases, tha t is, ^ (tan 6) > 0; or, fa2> ®- When passing 

a horizontal inflection point t an 6 first decreases to zero at 
the inflection point, and then increases again; or, inversely, 
t an 0 first increases, and then decreases again, tha t is, t an 6 = 

— has a maximum or a minimum at the inflection point, and 
dx 

d (Py 
therefore, ^ (tan 0 ) = ^ = O at the inflection point. 
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In engineering problems the investigation, whether the 
dy 

solution of the condition of extremes, ¿^ = 0, represents a 

minimum, or a maximum, or an inflection point, is rarely 
required, but it is almost always obvious from the nature of 
the problem whether a maximum of a minimum occurs, or 
neither. 

For instance, if the problem is to determine the speed at 
which the efficiency of a motor is a maximum, the solution: 
speed = 0, obviously is not a maximum bu t a mimimum, as a t 
zero speed the efficiency is zero. If the problem is, to find 
the current at which the output of an alternator is a maximum, 
the solution i = 0 obviously is a minimum, and of the other 
two solutions, i i and t 2 , the larger value, i2, again gives a 
minimum, zero output a t short-circuit current, while the inter
mediate value ii gives the maximum. 

i o i . The extremes of a function, therefore, are determined 
by equating its differential quotient to zero, as is illustrated 
by the following examples : 

Example 4. In an impulse turbine, the speed of the jet 
(steam jet or water jet) is Si. At what peripheral speed >S2 is 
the output a maximum. 

The impulse force is proportional to the relative speed of 
the jet and the rotating impulse wheel; tha t is, to (Sx-S2). 
The power is impulse force times speed S2; hence, 

and is an extreme for the value of S2, given by -T-<T- = 0 ; hence, 

t ha t is, when the peripheral speed of the impulse wheel equals 
half the jet velocity. 

Example 5. In a transformer of constant impressed 
e.m.f. eo = 2300 volts; the constant loss, t ha t is, loss which 
is independent of the output (iron loss), is P, = 500 watts . The 
internal resistance (primary and secondary combined) is r = 2 0 

P = kS2(S,-S2), (3) 

Si —2<S2 = 0 and *S2 = ^ ; ( 4 ) 
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ohms. At what current { is the efficiency of the transformer 
a maximum: that is, the percentage loss, À, a minimum? 

The loss is P = P,- + ri2 = 500 + 20i2 (5) 

The power input is P\ = ei = 230Qi; . . . . (6) 

hence, the percentage loss is, 

; /: '••"* (?) 
Pi ei ' v ' 

and this is an extreme for the value of current i, given by 

dk 

hence, 
(Pi+ri2)e-ei(2ri) 

e ^ 2 

or, 

Pi 
P , —r¡' 2 =0 and i = ^ / - ^ = 5 amperes, . . . (8) 

and the output is Pn = ei = l l ,500 watts. The loss is, P = P,-f-
ri2--= 2P¿ = 1000 wat ts ; tha t is, the i2r loss or variable loss, is 
equal to the constant loss P, . The percentage loss is, 

X=~=—— =0.087 = 8.7 per cent, 
Pi e 

and the maximum efficiency thus is, 

1-/1 = 0.913 = 91.3 per cent. 

102. Usually, when the problem is given, to determine 
those values of z for which y is an extreme, y cannot be expressed 
directly as function of x, y=f{x), as was done in examples 
(4) and (5), but y is expressed as function of some other quan-
ties, y=f(u, V. .), and then equations between u, v. . and x 
are found from the conditions of the problem, by which expres
sions of x are substituted for u, v . ., as shown in the following 
example : 

Example 6. There is a constant current i0 through a cir
cuit containing a resistor of resistance r 0 . This resistor r 0 
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is shunted by a resistor of resistance r. Wha t must be the 
resistance of this shunting resistor r, to make the power con
sumed in r, a maximum? (Fig. 56.) 

Let i be the current in the shunting resistor r. The power 
consumed in r then is, 

P = r i 2 (9) 

The current in the resistor r 0 is io — i, and therefore the 
voltage consumed by r 0 is r0(io — i), and the voltage consumed 
by r is ri, and as these two voltages must be equal, since both 

AAA 

FIG. 56 . Shunted Resistor. 

resistors are in shunt with each other, thus receive the same 
voltage, 

ri = r0(i0-i), 

and, herefrom, it follows tha t , 

do) 

Substituting this in equation (9) gives, 

D rr 0

2 t 'o 2 

<»> 

dP 
and this power is an extreme for ^ r = 0; hence: 

(r + ro ) 2 ro 2 t o 2 - r r 0

2 i o 2 2 ( r+ rn ) 
( r + r 0 ) 4 

hence, 
r = r 0 ; (12) 

t ha t is, the power consumed in r is a maximum, if the resistor 
r of the shunt equals the resistance ro. 
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The. current in r then is, by equation (10), 

and the power is, 

to 

' 9 ' 

p_roio2 

4 * 

103. If, after the function y=f(x) (the equation (11) in 
dy 

example (6) ) has been derived, the differentiation ^ = 0 is 

immediately carried out, the calculation is very frequently 
much more complicated than necessary. I t is, therefore, 
advisable not to differentiate immediately, but first to simplify 
the function y=f(x). 

If y is an extreme, any expression differing thereform by 
a constant term, or a constant factor, etc., also is an extreme. 
So also is the reciprocal of y, or its square, or square root, etc. 

Thus, before differentiation, constant terms and constant 
factors can be dropped, fractions inverted, the expression 
raised to any power or any root thereof taken, etc. 

For instance, in the preceding example, in equation (11), 

p _ rr0

2i0

2 

(r + r0)
2' 

the value of r is to be found, which makes P a maximum. 
If P is an extreme, 

r 

which differs rrom P by the omission of the constant factor 
r0

2i'o2, also is an extreme. 
The reverse of y-i, 

(r+r0)
2 

2/2 = — , 

is also an extreme. (2/2 is a minimum, where yi is a maximum, 
and inversely.) 

Therefore, the equation (11) can be simplified to the form : 

(r+r0)
2 r0

2 

2/2= -— = r+2r0+-¡r, 



dr r 2 ' 
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and, leaving out the constant term 2r 0 , gives the final form, 

2/3 = r + ^ 2 (13) 

This differentiated gives, 

hence, 
r = r 0 . 

104. Example 7. From a source of constant alternating 
e.m.f. e, power is t ransmit ted over a line of resistance r0 and 
reactance x 0 into a non-inductive load. Wha t must be the 
resistance r of this load to give maximum power? 

If i = current t ransmitted over the line, the power delivered 
a t the load of resistance r is 

P = ri2 (14) 

The to ta l resistance of the circuit is r+r0; the reactance 
is x0; hence the current is 

% = - , e

N = , . . . . . . (15) 
V (r + r0)2+Xo2 

and, by substi tut ing in equation (14), the power is 

P = ( r T r o ) 2 T x 7 2 ' ( 1 6 ) 

if P is an extreme, by omitting e2 and inverting, 

(r + r0)2+x0

2 

Vi- " 

r n 2 + X o 2 

= r + 2 r 0 + , 

is also an extreme, and likewise, 

r 0

2 + . t o 2 

y2 = r+ , 

is an extreme. 
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Differentiating, gives : 

dr r2 ' 

r^xW+Xo2 (17) 

Wherefrom follows, by substituting in equation (16), 

p Vr0

2 + x0

2e2 

~(r0 + Vr0

2 +x0

2)2 + x0

2 

e2 

= (18) 
2(r 0 + v / r 0

2 + x n 2 ) 

Very often the function y=f(x) can by such algebraic 
operations, which do not change an extreme, be simplified to 
such an extent that differentiation becomes entirely unnecessary, 
but the extreme is immediately seen; the following example 
will serve to illustrate : 

Example 8. In the same transmission circuit as in example 
(7), for what value of r is the current i a maximum? 

The current i is given, by equation (15), 

\ / ( r + r o ) 2 + x 0

2 ' 

Dropping e and reversing, gives, 

t/i = \ / ( r + r 0 ) 2 + a ; o 2 ; 

Squaring, gives, 

î/2 = (r + r 0 ) 2 + x 0

2 ; 

dropping the constant term x0

2 gives 

2 / 3 = ( r + r 0 ) 2 ; (19) 

taking the square root gives 

y4 = r+r0; 
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dropping the constant term r 0 gives 

2/5 = r; (20) 

tha t is, the current i is an extreme, when ys = r is an extreme, 
and this is the case for r = 0 and r= <x> : r = 0 gives, 

i = — • - , (21) 
v ' r 0

2 + V 
as the maximum value of the current, and r = oo gives 

i = 0, 

as the minimum value of the current. 
With some practice, from the original equation (1), imme

diately, or in very few steps, the simplified final equation can 
be derived. 

105. In the calculation of maxima and minima of engineer
ing quantities x, y, by differentiation of the function y=/(x), 
it must be kept in mind tha t this method gives the values of 
x, for which the quant i ty y of the mathematical equation y =f(x) 
becomes an extreme, but whether this extreme has a physical 
meaning in engineering or not requires further investigation; 
tha t is, the range of numerical values of x and y is unlimited 
in the mathematical equation, bu t may be limited in its engineer
ing application. For instance, if x is a resistance, and the 
differentiation of j / = / ( x ) leads to negative values of x, these 
have no engineering meaning; or, if the differentiation leads 
to values of x, which, substituted in y = / ( x ) , gives imaginary, or 
negative values of y, the result also may have no engineering 
application. In still other cases, the mathematical result 
may give values, which are so far beyond the range of indus
trially practicable numerical values as to be inapplicable. 
For instance : 

Example 9. In example (8), to determine the resistance 
r, which gives maximum current t ransmit ted over a t rans
mission line, the equation (15), 

% = 
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as tne value of the resistance, which gives maximum current, 
and the current would then be, by substituting (24) into (15), 

The solution (24), however, has no engineering meaning, 
as the resistance r cannot be negative. 

Hence, mathemetically, there exists no maximum value 
of i in the range of r which can occur in engineering, that is, 
within the range, 0 < r< oo. 

In such a case, where the extreme falls outside of the range 
of numerical values, to which the engineering quanti ty is 
limited, it follows tha t within the engineering range the quan
t i ty continuously increases toward one limit and continuously 
decreases toward the other limit, and tha t therefore the two 
limits of the engineering range of the quanti ty give extremes. 
Thus r = 0 gives the maximum, r = oothe minimum of current. 

io6. Example io . An alternating-current generator, of 
generated e.m.f. e = 2500 volts, internal resistance r 0 = 0.25 
ohms, and synchronous reactance x 0 = 10 ohms, is loaded by 
a circuit comprising a resistor of constant resistance r = 20 
ohms, and a reactor of reactance x in series with the resistor 
r. What value of reactance x gives maximum output? 

If i = current of the alternator, its power output is 

P = r t 2 = 20i 2 ; (26) 

immediately differentiated, gives as condition of the extremes: 

di= 2 ( r + r 0 ) = o _ 
dr 2j (r + r 0 ) 2 + x 0

2 ) V ( r + r 0 ) 2 +x?~ ' 

hence, either r + r o = 0; (22) 

or, (r + r 0 ) 2 + x o 2 = <x (23) 

the latter equation gives r = cc; hence i = 0, the minimum value 
of current. 

The former equation gives 

r - - r 0 , (24) 



162 ENGINEERING MATHEMATICS. 

the tota l resistance is r + r o = 20.25 ohms; the tota l reactance 
is x + x o = 1 0 + x ohms, and therefore the current is 

i= , e (27) 
V(r + r 0 )

2 + (x + x 0 )
2 

and the power output , by substi tut ing (27) in (26), is 

p _ re2 _ 20X2500 2 

(r + r0

2)+(x + x0)
2 20.25 2 + ( l 0 + z ) 2 ' " ' K ' 

Simplified, this gives 

2/i = (r + r„)2 + ( i+x 0 )
2 ; (29) 

y2-(x+xo)2; 
hence, 

^ = 2(x+x0)=0; 

and 

x= — xo= —10 ohms; (30) 

tha t is, a negative, or condensive reactance of 10 ohms. The 
power output would then be, by substi tuting (30) into (28), 

re 2 2 0 + 2 5 0 0 2 

P = 7 — ; — v g - = o n OK? wa t t s = 305 kw. . . (31) 
(r + r0y 20.25 2 

If, however, a condensive reactance is excluded, t ha t is, 
it is assumed tha t x >0 , no mathematical extreme exists in the 
range of the variable x, which is permissible, and the extreme 
is a t the end of the range, x=0, and gives 

= 245 kw (32) 
(r + r 0 )

2 + x 0

2 

107. Example 1 1 . In a 500-kw. alternator, a t voltage 
e=2500, the friction and windage loss is P w = 6 kw., the iron 
loss P¿ = 24 kw., the field excitation loss is P , = 6 kw., and the 
armature resistance r = 0 . 1 ohm. At what load is the efficiency 
a maximum? 
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Po ei 2500?: 

' o + P -

or, simplified, 

hence, 

' P 0 + P ei+Pw+Pi + Pf + ri2 36000 +25ÍXH' + 0 . K 2 ' ^ 

P w + P i + P / . 
y 1 = + n . 

Pw+Pi + Pf 
• r-di i2 

and, 

î = \ r ~ - W - Q y - = 600 amperes, . (36) 

and the output, at which the maximum efficiency occurs, by 
substituting (36) into (34), is 

P = e?' = 1500 kw., 

that is, at three times full load. 
Therefore, this value is of no engineering importance, but 

means tha t at full load and a t all practical overloads the 
maximum efficiency is not yet reached, but the efficiency is 
still rising. 

io8. Frequently in engineering calculations extremes of 
engineering quantities are to be determined, which are func
tions or two or more independent variables. For instance, 
the maximum power is required which can be delivered over a 
transmission line into a circuit, in which the resistance as well 
as the reactance can be varied independently. In other 
words, if 

y=f(u,v) . . . . (37) 

The sum of the losses is: 

P=Pw+Pi+P,+ri?=36,000+0. I T 2 . . . . ( 3 3 ) 

The output is 

Po = e t '=2500¿; ( 3 4 ) 

hence, the efficiency is 
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is a function of two independent variables u and v, such a 
pair of values of u and of v is to be found, which makes y a 
maximum, or minimum. 

Choosing any value uo, of the independent variable u, 
then a value of v can be found, which gives the maximum (or 
minimum) value of y, which can be reached for M = M 0 . This 
is done by differentiating y=f(u0,v), over v, t h u s : 

« 
From this equation (38), a value, 

» = / i ( « o ) , (39) 

is derived, which gives the maximum value of y, for the given 
value of uo, and by substi tut ing (39) into (38), 

y=h(uo), (40) 

is obtained as the equation, which relates the different extremes 
of y, t ha t correspond to the different values of u0, with u0. 

Herefrom, then , tha t value of ito is found which gives the 
maximum of the maxima, by differentiation: 

<«> 

Geometrically, y=f(u,v) may be represented by a surface 
in space, with the coordinates y, u, v. y =f(uo,v), then, represents 
the curve of intersection of this surface with the plane u0 = 
constant, and the differentation gives the maximum point 
of this intersection curve. 2/=/2(«o) then gives the curve 
in space, which connects all the maxima of the various inter
sections with the u0 planes, and the second differentiation 
gives the maximum of this maximum curve Ì / = / 2 ( W O ) , or the 
maximum of the maxima (or more correctly, the extreme of 
the extremes). 

Inversely, it is possible first to differentiate over u, thus , 
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and thereby get 

«=/s(»o).. (43) 

as the value of u, which makes y a maximum for the given 
value of v = vo, and substituting (43) into (42), 

î / = / 4 ( f o ) , (44) 

is obtained as the equation of the maxima, which differentiated 
over vo, thus, 

^ = 0 (45, 

gives the maximum of the maxima. 
Geometrically, this represents the consideration of the 

intersection curves of the surface with the planes v — constant. 
However, equations (38) and (41) (respectively (42) and 

(45)) give an extremum only, if both equations represent 
maxima, or both minima. If one of the equations represents 
a maximum, the other a minimum, the point is not an extre
mum, but a saddle point, so called from the shape of the sur
face y=f(u, v) near this point. 

The working of this will be plain from the following example : 
109. Example 12. The alternating voltage e = 30,000 is 

impressed upon a transmission line of resistance ro = 20 ohms 
and reactance .To = 50 ohms. 

What should be the resistance r and the reactance x of the 
receiving circuit to deliver maximum power? 

Let i = current delivered into the receiving circuit. The 
total resistance is ( r + r 0 ) ; the total reactance is (x+x0); hence, 
the current is 

i - , (46) 

V ( r + r 0 ) 2 + ( x + j 0 ) 2 

The power output is P = ri2; (47) 

hence, substituting (46), gives 

re2 

P = (r+r0)2 + (x+x0)2 (48) 
(a) For any given value of r, the reactance x, which gives 

dP 
maximum power, is derived by ^ " = 0 . 
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or, simplified, 

hence, 

TP 

P » - ( F T ^ : ( 5 0 ) 

(r + r0)
2 r 0

2 

2/2 = — and y3 = r+—; 

-ay=1—rT
 a n d r = ro, . . . . (51) 

and by substi tuting (51) into (50), the maximum power is, 

"m»* - (52) 

(ò) For any given value of x, the resistance r, which gives 
• • , dP \ 

maximum power, is given by -j- = 0. 

P simplified gives, 

(r + r 0 ) 2 + (x + J o ) 2 , r 0

2 + fx + x 0 ) 2 

2/i = ; 2/2 = r + ; 

J 2 ^ 2 _ 1 _ | r 0

2 + ( x 4 1 x o ) 2 _ ( ) 

dr r2 

r=Vr0

2 + (x+x0)
2, (53). 

which is the value of r, t ha t for any given value of x, gives 
maximum power, and this maximum power by substi tuting 
(53) into (48) is, 

D v r 0

2 + (x + Xo) 2€ 2 

t r 0 + V r 0

2 + (x + x „ ) 2 ] 2 + (x + x 0 ) 2 

e 2 

2 i r 0 + Vr-o2 + ( L x + x 0 )
2 i ' 

(54) 

P simplified, gives j/i = ( x + x 0 ) 2 ; hence, 

^ - = 2 ( x + x 0 ) = 0 and x=-x0 . . . (49) 
dx 

that is, for any chosen resistance r, the power is a maximum, 
if the reactance of the receiving circuit is chosen equal to tha t 
of the line, but of opposite sign, tha t is, as condensive reactance. 

Substi tuting (49) into (48) gives the maximum power 
available for a chosen value of r, as : 
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2/3 = r0 + r 0

2 + (x + x0)2; 

2 / 4 = v V + Or+xo) 2; 

y5 = r0

2 + (x+xo)2; 

y6 = (x+x0)2; 

y7 = (x+x0); 

and this value is a maximum for (x+xo)=0; tha t is, for 

x=-x0 (55) 

N O T E . If x cannot be negative, tha t is, if only inductive 
reactance is considered, x=0 gives the maximum power, and 
the lat ter then is 

e2 

• F M A X = ~ / " , . . . . (56) 
2jro + V r 0

2 + X o 2 | 

the same value as found in problem (7), equation (18). 
Substituting (55) and (54) gives again equation (52), thus, 

P = — 
M A X 4?o' 

n o . Here again, it requires consideration, whether the 
solution is practicable within the limitation of engineering 
constants. 

With the numerical constants chosen, it would be 

e2 30000-2 

" M A X = l ~ = orT- =11,250 K W . 
a 4 r 0 80 

e 
z = = 750 amperes, 

which is the maximum power tha t can be transmitted into a 
receiving circuit of reactance x. 

The value of x, which makes this maximum power P0 the 

highest maximum, is given by ~j^~=®-

Po simplified gives 
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and the voltage a t the receiving end of the line would be 

¿=iVr2+x2 = 7 5 0 V 2 0 2 + 5 0 2 = 4 0 , 4 0 0 volts; 

t h a t is, t he voltage a t the receiving end would be far higher 
t han a t the generator end, the current excessive, and the efficiency 
of transmission only 50 per cent. This extreme case thus is 
hardly practicable, and the conclusion would be tha t by the 
use of negative reactance in the receiving circuit, an amount 
of power could be delivered, at a sacrifice of efficiency, far 
greater than economical transmission would permit. 

In the case, where capacity was excluded from the receiv
ing circuit, the maximum power was given by equation (56) as 

P m a x = ef ^ - = 6100 kw. 
2\r0 + VVJ+lc0

2\ 

i n . Extremes of engineering quantities x, y, are usually 
determined by differentiating the function, 

£/=/(*), (57) 

and from the equation, 

§-<• <•» 

deriving the values of x, which make y an extreme. 
Occasionally, however, the equation (58) cannot be solved 

for x, but is either of higher order in x, or a transcendental 
equation. In this case, equation (58) may be solved by approx
imation, or preferably, the function, 

z-p- (59) 
dx, 

is plotted as a curve, the values of x taken, a t which 2 = 0, 
t ha t is, a t which the curve intersects the X-axis. For instance : 

Example 13 . The e.m.f. wave of a three-phase alternator, 
as determined by oscillograph, is represented by the equation, 

e = 36000)sin 0 - 0 . 1 2 sin ( 3 0 - 2 . 3 ° ) - 2 3 sin (50 -1 .5° ) + 

0.13 sin (70 -6 .2° ) j (60) 
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F I G . òr 

Substituting (61) into (62) gives, 

di 
z = -72= - 1 3 . 1 2 sin (0 -0 .3° ) +15.12 sin (30-3 .3°) +93.8 sin 

du 

( 5 0 - 3 . 6 ° ) - 1 3 7 . 1 sin (70-9 .9° ) = 0 . . . . (63) 

This equation cannot be solved for 0. Therefore z is 
plotted as function of 0 by the curve, Fig. 57, and from this 
curve the values of 0 taken at which the curve intersects the 
zero line. They are : 

0 = 1°; 20°; 47° 78°; 104°; 135°; 162°. 

This alternator, connected to a long-distance transmission line, 
gives the charging current to the line of 

t = 13.12cos ( 0 - 0 . 3 ° ) - 5 . 0 4 cos ( 3 0 - 3 . 3 ° ) - 1 8 . 7 6 c o s (50-3 .6°) 

+ 19.59 cos (70-9 .9°) . . . . (61) 

(see Chapter I I I , paragraph 95). 
What are the extreme values of this current, and at what 

phase angles 0 do they occur? 
The phase angle 0, at which the current i reaches an extreme 

value, is given by the equation 
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For these angles 6, the corresponding values of i are calculated 
by equation (61), and are : 

i 0 = + 9 ; _ i ; + 3 9 ; - 3 0 ; + 3 0 ; - 4 2 ; + 4 a m p e r e s . 

The current thus has during each period 14 extrema, of 
which the highest is 42 amperes. 

1 1 2 . In those cases, where the mathematical expression 
of the function y=f{x) is not known, and the extreme values 
therefore have to be determined graphically, frequently a greater 
accuracy can be reached by plotting as a curve the differential 
of y=f(x) and picking out the zero values instead of plotting 
y=f(x), and picking out the highest and the lowest points. 
If the mathematical expression of y=f(x) is not known, obvi-

dy 
ously the equation of the differential curve z = — (64) is usually 

dx 
not known either. Approximately, however, it can fre
quently be plotted from the numerical values of y=f{x), as 
follows : 

If Xi, x2, x3 . . . are successive numerical values of x, 

and J /1 , y2, y3 • • • the corresponding numerical values of y, 
dv 

approximate points of the differential curve z = ^ are given 

by the corresponding values: 
X2+X\ x3+x2 xt + x3 as abscissas : 

as ordinates: 

2 ' 2 ' 2 

2 / 2 - 2 / 1 . 2 / 3 - 2 / 2 . 2 / 4 - 2 / 3 

X2 — Xi ' X3 — X2 ' Xi—X3 

n$. Example 14, In the problem (1), the maximum permea
bility point of a sample of iron, of which the B , H curve is given 
as Fig. 51 , was determined by taking from Fig. 51 corresponding 

values of B and H, and plotting u = j j , against B in Fig. 52. 

A considerable inaccuracy exists in this method, in locating 
the value of B , a t which fi is a maximum, due to the flatness 
of the curve, Fig. 52. 
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The successive pairs of corresponding values of B and H, 
as taken from Fig. 51 are given in columns 1 and 2 of Table I. 

TABLE I . 

B 
Kilolines, 

H B 
'"a 

Ap B 

0 0 370 
1 1.76 570 + 200 0.5 
2 2.74 730 160 1.5 

3 3.47 865 135 2.5 
4 4.06 985 120 3.5 
5 4.59 1090 105 4.5 

6 5.10 1175 85 5.5 
7 5.63 1245 70 6.5 
8 6.17 1295 50 7.5 

9 6.77 1330 35 8.5 
10 7.47 1340 + 10 9.5 
11 8.33 1320 - 2 0 10.5 

12 9.60 1250 70 11.5 
13 11.60 1120 130 12.5 
14 15.10 930 190 13.5 

15 20.7 725 205 14.5 

In the third column of Table I is given the permeability, 

/Í=—, and in the fourth column the increase of permeabilitv, 

per B = l, à p.; the last column then gives the value of B, to 
which dp corresponds. 

In Fig. 58, values Ap are plotted as ordinates, with B as 
abscissas. This curve passes through zero at Z?=9.95. 

The maximum permeability thus occurs at the approximate 
magnetic density ¿?=9.95 kilolines per sq.cm., and not at B= 
10.2, as was given by the less accurate graphical determination 
of Fig. 52, and the maximum permeability is // ( ) = 1340. 

As seen, the sharpness of the intersection of the differential 
curve with the zero line permits a far greater accuracy than 
feasible by the method used in instance (1). 

114 . As illustration of the method of determining extremes, 
some further examples are given below: 
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Example 15 . A storage bat tery of n = 80 cells is to be 
connected so as to give maximum power in a constant resist
ance r = 0.1 ohm. Each bat tery cell has the e.m.f. e » - 2 . 1 
volts and the internal resistance r 0 = 0.02 ohm. How must 
the cells be connected? 

Assuming the cells are connected with x in parallel, hence 
ti 

— in series. The internal resistance of the bat tery then is 

n 
x r° nr0 n 

= —IT ohms, and the total resistance of the circuit is -¿r0 + r. 
X X 1 X2 

\ +ajo 

+i1. 

11 

A) 

Y Y - , 

11 A* 
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FIG. 58. First Differential Quotient of B,¡i Curve 

. . n n 
The e.m.f. acting on the circuit is — e0, since — cells of e.m.f. 

eo are in series. Therefore, the current delivered by the bat tery 
is, 

n 
- e 0 

;r0+r 

and the power which this current produces in the resistance 
r , i s , 

rn2eo2 

P = r i 2 = -

Í T 2 r * + r ) 
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This is an extreme, if 

is an extreme, hence, 

and 

ax x2 ' 

tha t is, — = 4 cells are connected in multiple, and 

1 1 5 . Example 16, In an alternating-current transformer the 
loss of power is limited to 900 watts by the permissible temper
ature rise. The internal resistance of the transformer winding 
(primary, plus secondary reduced to the primary) is 2 ohms, 
and the core loss a t 2000 volts impressed, is 400 watts , and 
varies with the 1.6th power of the magnetic density and there
fore of the voltage. At what impressed voltage is the output 
of the transformer a maximum? 

If e is the impressed e.m.f. and i is the current input, the 
power input into the transformer (approximately, a t non-
inductive load) is P = ei. 

If t he output is a maximum, a t constant loss, the input P 
also is a maximum. The loss of power in the winding is 

The loss of power in the iron a t 2000 volts impressed is 
400 watts , and a t impressed voltage e it therefore is 

'— = 20 cells in series. 

ri2 = 2i2. 

and the total loss in the transformer, therefore, is 
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^ s o ^ o o ^ ) 1 ' 6 , 

and, substituting, into P=CT: 

P = ^ 4 5 0 - 2 0 0 ( ¿ j ) 1 ' 6 . 

Simplified, this gives, 

g 3 - 6 

i/ = 2.25e 2-
2000 1- 6 ' 

and, differentiating, 

dy , „ 3.6e 2- 6

 n 

de 2000 1- 6 ' 
and 

i 1-6 
= 1.25. 

Hence. 

e 

(—Y 
\200ü/ 

= 1.15 and e = 2300 volts, 
2000 

which, substi tuted, gives 

P = 2300VT50-20ÖX1 . 25 = 32.52 kw. 

n 6 . Example 17 . In a 5-kw. alternating-current transformer, 
a t 1000 volts impressed, the core loss is 60 watts , the i2r loss 
150 watts . How must the impressed voltage be changed, 
to give maximum efficiency, (a) At full load of 5-kw; (ò) a t 
half load? 

The core loss may be assumed as varying with the 1.6th 
power of the impressed voltage. If e is the impressed voltage, 
. 5000 . , , „ , . 2500. , 
i = is the current a t full load, and %x = is the current a t 

half load, then a t 1000 volts impressed, the full-load current is 
5000 

= 5 amperes, and since the i2r loss is 150 watts , this give? 

herefrom, i t follows t ha t , 
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the internal resistance of the transformer as r = 6 ohms, and 
herefrom the i2r loss a t impressed voltage e is respectively, 

., 150 X10 6 _ 37.5 XlO 6

 ± 

n ¿ _ a n c j n 2 = watts . 
er ez 

Since the core loss is 60 watts a t 1000 volts, a t the voltage e 
it is 

PÌ=WX\J(KJQ) ^ t e -

The tota l loss, a t full load, thus is 

and a t half load it is 

• , , . « / « Y'8 37.5X10 6 

Simplified, this gives 

2/i = ( i ¿ 0 ) 1 6 + 0 . 6 2 5 X l 0 6 X e - 2 ; 

hence, differentiated, 

L 6 ï u W r « " 5 x l ( ) 6 e " 3 = 0 ; 

l f i ï ô W ^ - L 2 5 x l 0 6 X e " 3 = 0 ; 

e 3 - 6 = 3.125 X IO6 X lOOO1-6 = 3.125 X IO 1 0- 8 ; 

e 3- 6 = 0.78125 X IO6 X1000 1- 6 = 0.78125 X10 1 0 - 8 ; 

hence, e = 1373 volts for maximum efficiency at full load. 

and e = 938 volts for maximum efficiency at half load. 

117 . Example 18. (a) Constant voltage e = 1000 is im
pressed upon a condenser of capacity C = 10 mf., through a 
reactor of inductance L = 100 mh., and a resistor of resist
ance r = 4 0 ohms. Wha t is the maximum value of the charg
ing cur ren t 9 



176 ENGINEERING MATHEMATICS. 

(b) An additional resistor of resistance r ' = 210 ohms is 
then inserted in series, making the tota l resistance of the con
denser charging circuit, r = 250 ohms. Wha t is the maximum 
value of the charging current? 

The equation of the charging current of a condenser, through 
a circuit of low resistance, is (" Transient Electric Phenomena 
and Oscillations," p. 61) : 

and the equation of the charging current of a condenser, through 
a circuit of high resistance, is (" Transient Electric Phenomena 
and Oscillations," p . 51), 

where 

where 

Substituting the numerical values gives: 

(a) i = 10.2 £ _ 2 0 0 i sin 980 t; 

(6) 1 = 6.667 j î-soo*- £ - 2 0 o o ( ¡ 

Simplified and differentiated, this gives: 

ali 

(a) z=--j7 = 4.9 cos 9 8 0 i - s i n 9 8 0 f = 0 ; 

hence tan980¿ = 4.9 

980¿ = 68.5° = 1.20 

í= 
1.20 +nn 

908 sec. 

(*>) Z = _jí = 4 e - 2 0 0 0 í _ £ -500f = 0; 
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hence, 

¿ = 0.00092 sec , 

and, by substi tuting these values of t into the equations of the 
current, gives the maximum values : 

1.20 + wr 

(o) i = 1 0 £ 4.9 =7 .83£-° - 6 4 " = 7 .83x0 .53 n amperes; 

t ha t is, an infinite number of maxima, of gradually decreasing 
values: +7 .83 ; - 4 . 1 5 ; +.2.20; - 1 . 1 7 etc. 

(6) i - e . ^ C e " * " 6 - e" 1- 8 4) =3.16 amperes. 

I I 8 . Example 19. In an induction generator, the fric
tion losses are P / = 1 0 0 kw.; the iron loss is 200 kw. a t the ter
minal voltage of e = 4 kv., and may be assumed as proportional 
to the 1.6th power of the voltage; the loss in the resistance 
of the conductors is 100 kw. at i = 3000 amperes output, and may 
be assumed as proportional to the square of the current, and 
the losses resulting from stray fields due to magnetic saturation 
are 100 kw. a t e = 4 kv., and may in the range considered be 
assumed as approximately proportional to the 3.2th power 
of the voltage. Under what conditions of operation, regard
ing output , voltage and current, is the efficiency a maximum? 

The losses may be summarized as follows: 

Friction loss, P¡ = 100 kw. ; 

Iron loss 

Saturation loss, 

hence the tota l loss is PL = P/+Pi+PC+P. 

= 100 
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dX 
9 0 0 0 2 0, di i1 3000 2 

then, substi tuting i in the expression of X, gives 

and X is an extreme, if the simplified expression, 

2 / = ^ i " ' ~ 4 i - 6 e o - 4 + 4 3 - 2 e l 2 

is an extreme, at 

d j / = _ 2 0 ^ L2 
de e3 4 1 8 e 1 - 4 4 3 ' 2 ' 

hence, 2 + | j j | e ^ - ^ e 3 - * - 0 ; 

/ g \ l - 6 o 

hence, J = " j ~ 9 a n < l e = 5.50 kv., 

and, by substitution the following values are obtained : X =0.0323; 
efficiency 96.77 per cent; current i = 8000 amperes; output 
P = 44,000 kw. 

119 . In all probability, this output is beyond the capacity 
of the generator, as limited by heating. The foremost limita
tion probably will be the i2r heating of the conductors; t ha t is, 

The output is P = ei; hence, percentage of loss is 

, PL 1 Q Q { 1 + K l ) 1 , 6 + ( 3 ¿ ó ) 2 + ( r ) 3 ' 2 } 
À ~ P el 

The efficiency is a maximum, if the percentage loss X is a 
minimum. For any value of the voltage e, this is the case 

a t the current i, given by ~^ = 0- hence, simplifying and differ

entiating X, 
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the maximum permissible current will be restricted to , for 
instance, ¿ = 5000 amperes. 

For any given value of current i, the maximum efficiency, 
tha t is, minimum loss, is found by differentiating, 

X = -

over e, t hus : 

dX n 

Simplified, X gives 

2 Í - Y V -

v2 /p\a-2 

l O O U + 2 ' ' ' 8000/ VI 
ei 

y~e { 1 + ( 3 0 0 O ) }
 + 4 > 6 e ° 6 + 4 3 . 2

e 2 ' 2 ; 

hence, differentiated, it gives 

de~ e2[ J + 4 1 - « e 0 i + 43--' ' 

/ e y - 2 6 / A 1 ' 6 5 Í / ?: \ 2 1 

W " 11 

For ¿ = 5000, this gives: 

, , 1.065 and e = 4.16 kv.; 

hence, 

>l= 0.0338, Efficency 96.62 percent , Power F=20,800 kw. 

Method of Least Squares. 

120. An interesting and very important application of the 
theory of extremes is given by the method of least squares, which 
is used to calculate the most accurate values of the constants 
of functions from numerical observations which are more numei-
ous than the constants. 

If J, = / (* ) , (1) 
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is a function having the constants a, b, c . . . and the form of 
the function (1) is known, for instance, 

and the constants a b, c are not known, but the numerical 
values of a number of corresponding values of x and y are given, 
for instance, by experiment, xi, x2, x3, x 4 . . . and yx, y2, y3, y i. . ., 
then from these corresponding numerical values xn and yn 

the constants a, 6, c . . . can be calculated, if the numerical 
values, t ha t is, the observed points of the curve, are sufficiently 
numerous. 

If less points xx yx, x2, y2. . . are observed, then the equa
tion (1) has constants, obviously these constants cannot be 
calculated, as not sufficient data are available therefor. 

If the number of observed points equals the number of con
stants, they are just sufficient to calculate the constants. For 
instance, in equation (2) , if three corresponding values xx, yx; 
x2, y2; x3, y3 are observed, by substi tuting these into equation 
(2), three equations are obtained: 

which are just sufficient for the calculation of the three constants 
a, b, c. 

Three observations would therefore be sufficient for deter
mining three constants, if the observations were absolutely 
correct. This, however, is not the case, but the observations 
always contain errors of observation, tha t is, unavoidable inac
curacies, and constants calculated by using only as many 
observations as there are constants, are not very accurate. 

Thus, in experimental work, always more observations 
are made than just necessary for the determination of the 
constants , for the purpose of getting a higher accuracy. Thus, 
for instance, in astronomy, for the calculation of the orbit of 
a comet, less than four observations are theoretically sufficient, 
but if possible hundreds are taken , t o get a greater accuracy 
in the determination of the constants of the orbit. 

y = a+bx+cx2, (2) 

yx=a+bxx + c x i 2 ; 

y 2 = a + o x 2 + c x 2

2 ; 

j/3 = a 3 + 6 x + c x 3

2 , 

(3) 



MAXIMA AND MINIMA. 181 

If, then, for the determination of the constants a, 6, c of 
equation (2), six pairs of corresponding values of x and y were 
determined, any three of these pairs would be sufficient to 
give a, b, c, as seen above, but using different sets of three 
observations, would not give the same values of a, b, c (as it 
should, if the observations were absolutely accurate), but 
different values, and none of these values would have as high 
an accuracy as can be reached from the experimental data , 
since none of the values uses all observations. 

" i . If y = / (* ) , (1) 

is a function containing the constants a, b, c . . ., which are still 
unknown, and X\, t/i; x2, y2; x3, y3; etc., are corresponding 
experimental values, then, if these values were absolutely cor
rect, and the correct values of the constants a, b, c . . . chosen, 
y\=f(x\) would be t rue ; that is, 

* W - » - 0 i ] (5, 

/ f e ) - 2 / 2 = 0, etc. j 

Due to the errors of observation, this is not the case, but 
even if a, b, c. .. are the correct values, 

2/1 ^ / ( x i ) etc. ; (6) 

t ha t is, a small difference, or error, exists, thus 

/ ( * ! ) - 2 / 1 = ¿>i; Ì 
(7) 

f(x2)-2/2 = ¿ 2 , etc. ; j 

If instead of the correct values of the constants, a, b, c . . ., 
other values were chosen, different errors d\, d2 . .. would 
obviously result. 

From probability calculation it follows, tha t , if the correct 
values of the constants a, b, c .. . are chosen, the sum of the 
squares of the errors, 

ôl

2+ô2*+d3

2+ (8) 

is less than for any other value of the constants a, b, c . . . ; t ha t 
is, it is a minimum. 



182 ENGINEERING MATHEMATICS. 

122. The problem of determining the constants a, b, c. . ., 
thus consists in finding a set of constants, which makes the 
sum of the squares of the errors d a minimum; tha t is, 

z= 2 d 2 == minimum, (9) 

is the requirement, which gives the most accurate o r most 
probable set of values of the constants a, b, c. . . 

Since by (7), 8=f(x) — y, it follows from (9) as the condi
tion, which gives the most probable value of the constants 
a, b, c . . .; 

2 = %{f(x) — i/j 2 = minimum; . . . . (10) 

tha t is, the least sum of the squares of the errors gives the most 
probable value of the constants a, b, c. . . 

To find the values of a, b, c . . ., which fulfill equation (10), 
the differential quotients of (10) are equated to zero, and give 

£ - 2 > > - » i ^ - o : ' 

^ = ^ l / ( * ) - 2 / S - ^ - = 0 ; e t e . J 

This gives as many equations as there are constants a,b,c ..., 
and therefore just suffices for their calculation, and the values 
so calculated are the most probable, t ha t is, the most accurate 
values. 

Where extremely high accuracy is required, as for instance 
in astronomy when calculating from observations extending 
over a few months only, the orbit of a comet which possibly 
lasts thousands of years, the method of least squares must be 
used, and is frequently necessary also in engineering, to get 
from a limited number of observations the highest accuracy 
of the constants. 

123. As instance, the method of least squares may be applied 
in separating from the observations of an induction motor, 
when running light, the component losses, as friction, hysteresis, 
etc. 
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In a 440-volt 50-h.p. induction motor, when running light, 
t ha t is, without load, at various voltages, let the terminal 
voltage e, the current input i, and the power input p be observed 
as given in the first three columns of Table I : 

T A B L E I 

e i p tV Po 
PO 

cale. J 

148 8 790 13 780 746 + 32 
220 11 920 24 900 962 - 62 
320 19 1500 72 1430 1382 + 48 

410 23 1920 106 1810 1875 - 35 
440 26 2220 135 2085 2058 + 27 
473 29 2450 168 2280 2280 0 

580 43 3700 370 3330 3080 + 250 
640 56 5000 627 4370 3600 + 770 
700 75 8000 1125 6875 4150 +2725 

The power consumed by the motor while running light 
consists of: The friction loss, which can be assumed as con
s tant , a; the hysteresis loss, which is proportional to the 1.6th 
power of the magnetic flux, and therefore of the voltage, 6e 1 - 6 ; 
the eddy current losses, which are proportional to the square 
of the magnetic flux, and therefore of the voltage, ce2; and the i2r 
loss in the windings. The total power is, 

p = a+bev6+ce2+n2 (12) 

From the resistance of the motor windings, r = 0.2 ohm, 
and the observed values of current i, the i2r loss is calculated, 
and tabulated in the fourth column of Table I, and subtracted 
from p, leaving as the total mechanical and magnetic losses the 
values of po given in the fifth column of the table, which should 
be expressed by the equation : 

p = a+be^+ce2 (13) 

This leaves three constants, a, b, c, to be calculated. 
Plotting now in Fig. 59 with values of e as abscissas, the 

current i and the power po give curves, which show tha t within 
. the voltage range of the test, a change occurs in the motor, 
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as indicated by the abrupt rise of current and of power beyond 
473 volts. This obviously is due to beginning magnetic satura
tion of the iron structure. Since with beginning saturation 
a change of the magnetic distribution must be expected, t ha t 
is, an increase of the magnetic s t ray field and thereby increase 
of eddy current losses, it is probable t ha t at this point the con-
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FIG. 5 9 . Excitation Power of Induction Motor. 

stants in equation (13) change, and no set of constants can be 
expected to represent t h e entire range of observation. For 
the calculation of the constants in (13), thus only the observa
tions below the range of magnetic saturation can safely be used, 
t ha t is, up to 473 volts. 

From equation (13) follows as the error of an individual 
observation of e and po: 

a = o + 6 e 1 - 6 + c e 2 _ p 0 . (14) 
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hence, 

thus : 
z = 2 d 2 = 2 { a + & e 1 - 6 + c e 2 - ? 0 i 2 = nñmmum, (15) 

= S { a + r V - s + c e 2 - p o } = 0 ; 
dz_ 

da 

dz 
^ = S i a + 6 e 1 - 6 + c e 2 - p o ! e 1 - 6 = 0; 

dz 
— = S ( a + 6 e 1 - 6 + c e 2 - ü o ! e 2 = 0; 
ce r 

(16) 

and, if n is the number of observations used (n = 6 in this 
instance, from e = 148 to e = 473), this gives the following 
equations : 

n a + ò S e 1 - « + c S e 2 - S 3 9 O = 0; ' 

a S e i - 8 + 6 S e 3 - 2 + c 2 e 3 - 6 - S e i ^ o = 0; . . (17) 

a 2 e 2 + & 2 e 3 - 6 + c 2 e 4 - 2 e 2 p 0 = 0. j 

Substituting in (17) the numerical values from Table I gives, 

0 + 11.7 b 103 + 126 c 10 3 = 1550; 

a + 14.6 b 10 3 + 163 c 10 3 = 1830; . . (18) 

o + 15.1 b 10 3 + 170 c 10 3 = 1880; J 
hence, 

o = 540; 

6 = 32.5X10~ 3 ; 

c = 5 X l 0 " 3 , 

(19) 

and 

po = 540 +0.0325 <+« +0 .005 e 2 (20) 

The values of po, calculated from equation (20), are given 
in the sixth column of Table I, and their differences from the 
observed values in the last column. As seen, the errors are in 
both directions from the calculated values, except for the three 
highest voltages, in which the observed values rapidly increase 
beyond the calculated, due probably to the appearance of a 
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loss which does not exist at lower voltages—the eddy currents 
caused by the magnetic stray field of saturation. 

This rapid divergency of the observed from the calculated 
values a t high voltages shows tha t a calculation of the constants, 
based on all observations, would have led to wrong values, 
and demonstrates the necessity, first, to critically review the 
series of observations, before using them for deriving constants, 
so as to exclude constant errors or unidirectional deviation. I t 
must be realized tha t the method of least squares gives the most 
probable value, tha t is, the most accurate results derivable 
from a series of observations, only so far as the accidental 
errors of observations are concerned, t ha t is, such errors which 
follow the general law of probability. The method of least 
squares, however, cannot eliminate constant errors, t ha t is, 
deviation of the observations which have the tendency to be 
in one direction, as caused, for instance, by an instrument reading 
too high, or too low, or the appearance of a new phenomenon 
in a par t of the observation, as an additional loss in above 
instance, etc. Against such constant errors only a critical 
review and study of the method and the means of observa
tion can guard, tha t is, judgment, and not mathematical 
formalism. 

The method of least squares gives the highest accuracy 
available with a given number of observations, but is frequently 
very laborious, especially if a number of constants are to be cal
culated. I t , therefore, is mainly employed where the number of 
observations is limited and cannot be increased a t will; but where 
it can be increased by taking some more observations—as is 
generally the case with experimental engineering investigations 
—the same accuracy is usually reached in a shorter time by 
taking a few more observations and using a simpler method 
of calculation of the constants, as the SA-method described in 
paragraphs 153 to 157. 

Diophantic Equations. 

123A.—The method of least squares deals with the case, 
when there are more equations than unknown quantities. In 
this case, there exists no set of values of the unknown quantities, 
which exactly satisfies the equations",'ând the problem is, to find 
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the set of values, which most nearly satisfies the equations, tha t 
is, which is the most probable. 

Inversely, sometimes in engineering the case is met, when there 
are more unknown than equations, for instance, two equations 
with three unknown quantities. Mathematically, this gives not 
one, but an infinite series of sets of solutions of the equations. 
Physically however in such a case, the number of permissible 
solutions may be limited by some condition outside of the algebra 
of equations. Such for instance often is, in physics, engineering, 
etc., the condition tha t the values of the unknown quantities 
must be positive integer numbers. 

Thus an engineering problem may lead to two equations with 
three unknown quantities, which latter are limited by the con
dition of being positive and integer, or similar requirements, 
and in such a case, the number of solutions of the equation may 
be finite, although there are more equations than unknown 
quantities. 

For instance: 
In calculating from economic consideration, in a proposed 

hydroelectric generating station, the number of generators, 
exciters and step-up transformers, let: 

x ~ number of generators 
y = number of exciters 
z = number of transformers 

Suppose now, the physical and economic conditions of the 
installation lead us to the equations: 

8x + 3y + z = 49 (1) 

2x + y + 3z = 21 (2) 

These are two equations with three unknown, x, y, z; these 
unknown however are conditioned by the physical requirement, 
tha t they are integer positive numbers. 

To at tempt to secure a third equation would then over deter
mine the problem, and give either wrong, or limited results. 

Eliminating z from (1) and (2), gives: 

l l x + 4y = 63 (3) 
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hence: 
63 - l l x _ „ , 3 - 3x 

y 4 = 15 - 2x + (4) 

3 — 3x 

íince y must be an integer number, — ^ — must also be an 

integer number. Call this u, it is: 
3 - 3x 

4 = u 

3 - 4M M 
x = —g- - - = 1 — M — g (5; 

ti 

since x must be an integer number, ^ must also be an integer 

number, that is: 

u = 3u 6) 

hence, substituted into (5), (4) and (2): 

x = 1 — 4v 1 
j/ = 13 + 11» (7) 
2 = 2 - V J 

(7) thus are the solutions of the equations (1) (2), where v is any 
integer number. 

As seen, mathematically, there are an infinite number of 
solutions. 

Substituting now for v integer numbers: 
1) = 4- 2 + 1 0 - 1 - 2 
X = - 7 - 3 + 1 + 5 + 9 
y = + 35 + 24 + 13 + 2 - 9 
z = 0 + 1 + 2 + 3 + 4 

As seen, there are only two solutions, for v = 0 and v = — 1, 
which give for x, y, and z, three integer positive values, and which 
thus satisfy the physical restriction. 
v = 0; x = 1, y = 13, z = 2 is excluded by engineering con
sideration, as nobody would consider thirteen exciters with one 
generator, and thus there remains only one applicable solution: 
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x = 5 
y = 2 
e = 3 

We thus have here the case of two equations with three un
known quantities, which have only one single set of these un
known quantities satisfying the problem, and thus give a definite 
solution, though mathematically indefinite. 

This type of equation has first been studied by Diophantes 
of Alexandria. 



CHAPTER V. 

METHODS OF APPROXIMATION. 

124. The investigation even of apparently simple engineer
ing problems frequently leads to expressions which are so 
complicated as to make the numerical calculations of a series 
of values very cumbersonme and almost impossible in practical 
work. Fortunately in many such cases of engineering prob
lems, and especially in the field of electrical engineering, the 
different quantities which enter into the problem are of very 
different magnitude. Many apparently complicated expres
sions can fiequently be greatly simplified, to such an extent as 
to permit a quick calculation of numerical values, by neglect
ing terms which are so small t ha t their omission has no appre
ciable effect on the accuracy of the result; tha t is, leaves the 
result correct within the limits of accuracy required in engineer
ing, which usually, depending on the nature of the problem, 
is not greater than from 0.1 per cent to 1 per cent. 

Thus, for instance, the voltage consumed by the resistance 
of an alternating-current transformer is a t full load current 
only a small fraction of the supply voltage, and the exciting 
current of the transformer is only a small fraction of the full 
load current, and, therefore, the voltage consumed by the 
exciting current in the resistance of the transformer is only 
a small fraction of a small fraction of the supply voltage, hence, 
it is negligible in most cases, and the transformer equations are 
greatly simplified by omitting it. The power loss in a large 
generator or motor is a small fraction of the input or output, 
the drop of speed at load in an induction motor or direct-
current shunt motor is a small fraction of the speed, etc., and 
the square of this fraction can in most cases be neglected, and 
the expression simplified thereby. 

Frequently, therefore, in engineering expressions con
taining small quantities, the products, squares and higher 

187 
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powers of such quanti t ies may be dropped and the expression 
thereby simplified; or, if the quantit ies are not quite as small 
as to permit the neglect of their squares, or where a high 
accuracy is required, the first and second powers may be retained 
and only the cubes and higher powers dropped. 

The most common method of procedure is, t o resolve the 
expression into an infinite series of successive powers of the 
small quanti ty, and then retain of this series only the first 
term, or only the first two or three terms, etc., depending on the 
smallness of the quant i ty and the required accuracy. 

125. The forms most frequently used in the reduction of 
expressions containing small quantities are multiplication and 
division, the binomial series, the exponential and the logarithmic 
series, the sine and the cosine series, etc. 

Denoting a small quant i ty by s, and where several occur, 
by Si, s 2 , s 3 . . . the following expression holds: 

(1 ± S i ) ( l ± S 2 ) = l ± S i ± S 2 ± S i S 2 , 

and, since s i s 2 is small compared with the small quantit ies 
«i and s 2 , or, as usually expressed, S i s 2 is a small quant i ty of 
higher order (in this case of second order), it may be neglected, 
and the expression written : 

( l ± * 1 ) ( l ± * 2 ) - l ± * l ± * 2 (1) 

This is one of the most useful simplifications : the multiplica
tion of terms containing small quantities is replaced by the 
simple addition of the small quantities. 

If the small quanti t ies s 1 and s 2 are not added (or subtracted) 
to 1, but to other finite, t ha t is, not small quantities a and b, 
a and 6 can be taken out as factors, thus , 

( o ± « i i ( b ± * 2 ) = r i ( l ± j ) ( l ± Ç ) = o & ( l ± ! l ± Ç ) , . (2) 

where ^ and y must be small quanti t ies. 

As seen, in this case, Sj and s 2 need not necessarily be abso
lutely small quantit ies, but may be quite large, provided that 
a and b are still larger in magnitude ; t ha t is, sj must be small 
compared with a, and s 2 small compared with b. For instance, 
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in astronomical calculations the mass of the earth ^which 
absolutely can certainly not be considered a small quant i ty) 
is neglected as small quanti ty compared with the mass of the 
sun. Also in the effect of a lightning stroke on a primary 
distribution circuit, the normal line voltage of 2200 may be 
neglected as small compared with the voltage impressed by 
lightning, etc. 

126. Example. In a direct-current shunt motor, the im
pressed voltage is en = 125 volte; the armature resistance is 
r 0 = 0.02 ohm; the field resistance is r i = 5 0 ohms; the power 
consumed by friction is p /=300 watts , and the power consumed 
by iron loss is p» = 400 watts . What is the power output of 
the motor at io = 50,100 and 150 amperes input? 

The power produced at the armature conductors is the 
product of the voltage e generated in the armature conductors, 
and the current i through the armature, and the power output 
a t the motor pulley is, 

p = ei-p/-pi (3) 

The current in the motor field is —, and the armature current 
r\ 

therefore is, 

» = i o - — , (4) 

where y- is a small quanti ty, compared with io. 

The voltage consumed by the armature resistance is roi, 
and the voltage generated in the motor armature thus is : 

e = c 0 —r 0 i , (5) 

where r0i is a small quanti ty compared with e<i. 
Substituting herein for i the value (4) gives, 

e = e 0 - r 0 ( i 0 - ^ (6) 

Since the second term of (6) is small compared with eo, 

and in this second term, the second term — is small com-

pared with 1 0 , it can be neglected as a small term of higher 
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order; t ha t is, as small compared with a small term, and 
expression (6) simplified to 

e = e0—r0io (7) 

Substi tuting (4) and (7) into (3) gives, 

p = (e0 - r0i-o) (in—^j-Pf— P»" 

Expression (8) contains a product of two terms with small 
quantit ies, which can be multiplied by equation (1), and thereby 
gives, 

= e0io-r0io2—-— pt- Pi (9) 

Substi tuting the numerical values gives, 

p = 125i'o - 0.02Í02 - 562.5 - 300 - 400 
= 125io-0.02i'o 2—1260 approximately; 

thus, for to = 50, 100, and 150 amperes; p = 4940, 11,040, and 
17,040 wat ts respectively. 

127. Expressions containing a small quant i ty in the denom
inator are frequently simplified by bringing the small quant i ty 
in the numerator, by division as discussed in Chapter I I para
graph 39, tha t is, by the series, 

which series, if x is a small quant i ty s, can be approximated 
by : 

1 . 1 
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or, where a greater accuracy is required, 

1 
1 + 8 

_ 1 _ 

= l - s + s 2 ; 

= l + s + s 2 . 

(12) 

By the same expressions (11) and (12) a small quant i ty 
contained in the numerator may be brought into the denominator 
where this is more convenient, thus : 

1 + 8 = 

1 - S = 

1 - s ' 

1 + s 
; etc. 

(13) 

More generally then, an expression like ——, where s is 

small compared with o, may be simplified by approximation to 
the form, 

b b b, 
(14) a±s 

• t e ) 
or, where a greater exactness is required, by taking in the second 
term, 

6 6 / s s 2 \ 

128. Example. What is the current input to an induction 
motor, at impressed voltage e0 and slip s (given as fraction ot 
synchronous speed) if r0 + jx0 is the impedance of the primary 
circuit of the motor, and r\ + jxi the impedance of the secondary 
circuit of the motor at full frequency, and the exciting current 
of the motor is neglected; assuming s to be a small quant i ty; 
tha t is, the motor running at full speed? 

Let E be the e.m.f. generated by the mutual magnetic flux, 
tha t is, the magnetic flux which interlinks with primary and 
with secondary circuit, in the primary circuit. Since the fre
quency of the secondary circuit is the fraction s of the frequency 
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of the primary circuit, the generated e.m.f. oí the secondary 
circuit is sE. 

Since x\ is the reactance of the secondary circuit a t full 
frequency, a t the fraction s of full frequency the reactance 
of the secondary circuit is sxi, and the impedance of the sec
ondary circuit a t slip s, therefore, is ri+jsxi; hence the 
secondary current is, 

j sÈ 
• ~n+]sxi ' 

If the exciting current is neglected, the primary current 
equals the secondary current (assuming the secondary of the 
same number of turns as the primary, or reduced to the same 
number of turns) ; hence, the current input into the motor is 

sÈ 

1= , • (16) 

The second term in the denominator is small compared 
with the first term, and the expression (16) thus can be 
approximated by 

i - - T J ! * (17) 

"(1+'-7?) 
The voltage E generated in the primary circuit equals the 

impressed voltage e0, minus the voltage consumed by the 
current / in the primary impedance; r&+jx0 thus is 

E~*eo-!(r0+jx0) (18) 
Substi tut ing (17) into (18) gives 

E - e o ~ M i x 0 ) ( l - j ^ (19) 

In expression (19), the second term on the right-hand side, 
which is the impedance drop in the pr imary circuit, is small 

compared with the first term e0, and in the factor 

of this small term, the small term j ' ^ - 1 can thus be neglected 
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as a small term of higher order, and equation (19) abbreviated 
to 

sÊ 
E = eo- — (r0+jxo) (20) 

f i 

From (20) it follows that 

and by (13), 

1 + r - ( ' o+ j*o) 
ri 

E = e 0 \ 1 — — ( r 0 + j x o ) (21) 

Substi tut ing (21) into (17) gives 

and by (1), 

7 = se 0 

ri 

se0 

' ri 

.SXi s , . . 1 
i - ; - - - ( r o + F o ) } 
. ro .xo+X\ 
1 —s is 

ri J ri 
(22) 

If then, Ioo^io—jio' is the exciting current, the total 
current input into the motor is, approximately, 

í o - í + 7 . 00 

seof, , r 0 .Xo+xi\ 
= \ 1 + 8 IS \ 

n I n ri j +io-jio'. (23) 

129. One of the most important expressions used for the 
reduction of small terms is the binomial series: 

n ( n - l ) , , n(n-l)(n-2) , 
A±x)»-l±nx+-I-£ X 2 ± - ^ x3 

n(n-l)(n-2)(n-3) t 

(24) 

If x is a small term s, this gives the approximation, 

( l ± s ) » = l ± n s ; (25) 
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or, using the second term also, it gives 

( l ± s ) n - l ± n s + 1 ^ ~ ^ i f l (26) 

I n a more general form, this expression gives 

/ S \ n / TIS\ 

( a ± s ) » = o » ( l ± M = a " ( l ± — ) ; etc. . . (27) 

By the binomial, higher powers of terms containing small 
quantit ies, and, assuming n as a fraction, roots containing 
small quantities, can be eliminated; for instance, 

* 5 ± i - ( « ± . ) ¿ - a ¿ ( l ±8-) " - * ï ( l ± ¿ ) : 

1 1 1 / £_ \ - "__ l_ / 1 ns\ 

-„7=L==- = ( o ± s ) ~ » = a ~ » ( l ± ^ ) ° = ~ ( l = F - ) ; 
v ( a ± s ) \ a/ - Ç / a \ na / 

m 

V ( a ± s ) » = ( a ± s ) » = a » f 1 ± - j = ± — J ; etc. 

One of the most common uses of the binomial series is for 
the elimination of squares and square roots, and very fre
quently it can be conveniently applied in mere numerical calcu
lations; as, for instance, 

(201) 2 = 200 2 ( l + - ^ ) 2 = 40,OOo(l + ^ ) =40,400; 

2 9 . 9 2 = 3 ( F ( l - 4 ) 2 = 9 O 0 ( l - r y = 9 0 0 - 6 = 894; 

V99TS = 1 0 V l - 0 . Ö 2 = 10(1 - 0.02)^ = 10(1 - 0.01) = 9.99; 

1 1 1 . 
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130. Example 1. If r is the resistance, x the reactance of an 
alternating-current circuit with impressed voltage e, the 
current is 

e 
Vr2+x2 

If the reactance x is small compared with the resistance r, 
as is the case in an incandescent lamp circuit, then, 

1 

If the resistance is small compared with the reactance, as 
is the case in a reactive coil, then, 

1 

Example 2. How does the short-circuit current of an 
alternator vary with the speed, at constant field excitation? 

When an alternator is short circuited, the total voltage 
generated in its armature is consumed by the resistance and the 
synchronous reactance of the armature. 

The voltage generated in the armature at constant field 
excitation is proportional to its speed. Therefore, if e0 is the 
voltage generated in the armature at some given speed S0, 
for instance, the rated speed of the machine, the voltage 
generated at any other speed S is 
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or, if for convenience, the fraction is denoted by a, then 
»30 

S A 
a = T r and e = ae0) 

O 0 

where a is the ratio of the actual speed, to tha t speed at which 
the generated voltage is eo. 

If r is the resistance of the alternator armature , Xo t he 
synchronous reactance at speed So, the synchronous reactance 
a t speed S is x=ax0, and the current a t short circuit then is 

i = ^ ^ = - ^ = = (29) 
Vr^ + x2 v r 2 + a 2 x 0

2 

Usually r and xo are of such magnitude tha t r consumes 
a t full load about 1 per cent or less of the generated voltage, 
while the reactance voltage of x0 is of the magnitude of from 
20 to 50 per cent. Thus r is small compared with xo, and if 
a is not very small, equation (29) can be approximated by 

Then if x0 = 20r, the following relations exist : 

a = 0.2 0.5 1.0 2.0 

i ' = - X 0 . 9 6 8 8 0.995 0.99875 0.99969 x0 

Tha t is, the short-circuit current of an al ternator is practi
cally constant independent of the speed, and begins to decrease 
only a t very low speeds. 

1 3 1 . Exponential functions, logarithms, and trigonometric 
functions are the ones frequently met in electrical engineering. 

The exponential function is defined by the series, 
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2 

t ± . = l ± 8 + - , (34) 

and then 
2.«2 a's-e ± a s = l±as+-rj- (35) 

fax 
The logarithm is defined by logs x = I — ; hence, 

l o g . ( l ± i ) = ± J " j ^ . 

Resolving zr~— into a series, by (10), and then integrating, 
1 x X 

gives 

loge ( l ± x ) = ±j'{lTx+x2+x3 + .. .)dx 
X 2 X 3 X 4 . I S

 / 0 „ N 

= ± X - J ± J - J ± J - (36) 

This logarithmic series (36) leads to the approximation, 

log £ ( l ± s ) = ±s; (37) 

or, including the second term, it gives 

log £ ( l i s ) = ±s~s2, (38) 

and the more general expression is, respectively, 

log» (a ± s) - log a(l± = log a + log ( l ± ^ ) = log a. ± £ , (39) 

and, if z is a small quanti ty, s, the exponential function, may 
be approximated by the equation, 

e±a = l±s; (32) 

or, by the more general equation, 

6 ± « . = l±a . s ; (33) 

and, if a greater accuracy is required, the second term may 
be included, thus, 
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and, more accurately, 

S 8e 

log* (a±s) = hga±--j2. (40) 

Since logio iV = logio «Xlog £ iV = 0.4343 log« .V, equations (39) 
and (40) may be writ ten thus, 

logio ( l ± s ) = ± 0.4343s; 

logio (a±s) = logio a ±0.4343 -
(41) 

132. The trigonometric functions are represented by the 
infinite series : 

•̂2 y£ 

C O S Z = l - n + T £ - j g + . . . ; 

îp3 ^5 -̂7 
(42) 

which when s is a small quanti ty, may be approximated by 

coss = l and sin s = s; . . . . (43) 

or, they may be represented in closer approximation by 

cos s = l —— ; 

sin 8 - 8 [ - J ] ; 

or, by the more general expressions, 

cos as = 1 and cos as = 1 — 

(44) 

a2s2 

~ 2 ~ ' 

sin as = as and sin as = as 
(45) 

133. Other functions containing small terms may frequently 
be approximated by Taylor 's series, or i ts special case, 
MacLaurin's series. 

MacLaurin's series is wri t ten t h u s : 

X 3 

fix) - A O ) +x / ' ( 0 ) +pf"(0) + | f *¡T'(0) + . . . , . (46) 
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/ ( O « ) - / ( 0 ) + < M / ' ( 0 ) . J 

Taylor's series is written thus, 

(47Ï 

f(b+x) = / (6) +xf'(b) +p"(b) +Sf"'(b) +..., . (48) 

(49) 

and leads to the approximations : 

f(b±s)=f(b)±sf'(b); 

f{b±as)=f{b)±asf(b). } 
Many of the previously discussed approximations can be 

considered as special cases of (47) and (49). 
134. As seen in the preceding, convenient equations for the 

approximation of expressions containing small terms are 
derived from various infinite series, which are summarized 
Ijelow : 

j — = l T x + x 2 + x 3 + x * T . . . ; 

n ( n - l ) „ ra(n-l)(n-2) . (l±x)" = l±nx+ • 'x*±-+ ^ W . 

2 « 2 

. * - l ± x + g ± ^ + g ± . . . ; 

^ • 2 ^ » 4 

log £ ( l ± x ) = ±x—^±-~- j±... ; 
X2 X* X6 ' C5°) 

C O S ï = l - | + r £ - j ë + . . . ; 

-y3 -̂ 5 

sin z = * - j 3 

A x ) = / (0 ) + a f (0) + ^ / " ( 0 ) +p"'(0)+. 

f(b±x) - A b ) ± * / ' (&) + f j / " ( b ) ± í / " ' í b ) + • 

where / ' , / " , / ' " , etc., are respectively the first, second, third, 
etc., differential quotient of / ; hence, 

/ ( s ) - / ( 0 ) + s / ' ( 0 ) ; 1 
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The first approximations, derived by neglecting all higher 
terms but the first power of the small quant i ty x = s in these 
series, are : 

( l ± s ) " = l ± n s ; 

e±' = l±s; 

l o g e ( l ± s ) = ± s ; 

cos s = 1 ; 

sin s = s; 

/ (*)=/(0)+ar(0); 

f(b±s)=f(by±sf'(b); J 

and, in addit ion hereto is to be remembered the multiplication 
rule, 

( l ± * i ) ( l ± * a ) = l ± » i ± s 2 ; [ ± * i 8 2 ] . . . (52) 

135. The accuracy of the approximation can be estimated 
by calculating the next te rm beyond tha t which is used. 
This term is given in brackets in the above equations (50) 
and (51). 

Thus, when calculating a series of numerical values by 
approximation, for the one value, for which, as seen by the 
nature of the problem, the approximation is least close, the 
next term is calculated, and if this is less t han the permissible 
limits of accuracy, the approximation is satisfactory. 

For instance, in Example 2 of paragraph 130, the approxi
mate value of the shortoéircuit current was found in (30), as 
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1 - s ' 1 + s ' 

1 + ' 

The next term in the parenthesis of equation (30), by the 

binomial, would have been + ^ - ~ — s 2 ; substituting n = —J; 

/ r V 3 / r V 
s = ( — I , the next becomes + 5 - I — ) . The smaller the a, the 

\axo/ 8 \axo/ 
less exact is the approximation. 

The smallest value of a, considered in paragraph 130, was 
3 / r \ 4 

a = 0.2. For x 0 = 20r, this gives + g ( — ) =0.00146, as the 

value of the first neglected term, and in the accuracy of the 
result this is of the magnitude of — XO.00146, out of — X 0.9688, 

x0 x0 ' 
the value given in paragraph 130; tha t is, the approximation 

gives the result correctly within ^ ^ . " ^ = 0.0015 or within one-

sixth of one per cent, which is sufficiently close for all engineer

ing purposes, and with larger a the values are still closer 

approximations. 
136. I t is interesting to note the different expressions, 

which are approximated by (1+s ) and by (1 — s). Some of 
them are given in the following: 

l + s = l - s = 
1 1 
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V l + 2 s ; 
1 

Vl-2s ' 

/ T + l 

v 7 ! + n s ; 

•>/l — ns' 

4 
1 

1 — (n— w)s ' 
etc. 

2 - f ; 

1+ log , ( 1 + s ) ; 

1 - l o g , ( 1 - s ) ; 

l + » l o g . ( l + j ) ; 

l - n l o g . ( l - 0 ; 

i , i 

etc. 

1 +s in s; 

V i - 2 s ; 
1 

vr+̂ i' 
/ E i . 

Vi —ns; 

1 

4 1 — »?.s 
1 +(n— m)s' 

etc. 

1 + l n g , ( 1 - 8 ) ; 

1- log î (1 + s); 

1 + n l o g t ( \ —^ 

1 —nloge ^ 

i /l + s 
log £ A / : ¡ 

\ 1 — S 

l + l o : 

1 

1 + -

1 - S 

1 + S 

etc. 

1—sin s; 

1 f-rtsin - ; 1—n sin — ; 
n ' 
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1 +— sin ns: 
n ' 

cos V — 2s; 

etc. 

1 — sin ns: 
n 

cos V2s; 
etc. 

137. As an example may be considered the reduction to ite 
simplest form, of the expression: 

F= 

2 s ¡ J2sx 

Va "í(o + s i ) 3 ¡4 — sin 6s 2 j -(ae" c o s 2 . . / — 

- 3 »Ca+2si) 
1 / a — s 2 —alogt^/ — — 6 \ a + s 2 

v'a—2«i 

then, 

4 — sin 6.?2 = 4 ^ 1 - j s i n 6s 2 ^ = 4^1 — ̂ s2^ ; 

Hi' si 
«• = 1 + 2 - ; 

a 

COS' J ^ = ( l - ^ ) 2 = l - 2 ^ ; 
\ a \ al a' 

£ - 3 " = l - 3 s 2 ; 

a +2s ! = a ( l + 2 ^ ) ; 

1 " ° l o g £ > r f + | = 1 - a
 l o g £ J ~ Ì = 1 _ a h^^f-^ 

^ a 

= 1 —a l o g s ^ l - ^ = l + s 2 ; 

v . - z a . ^ ( . - ^ ) w . ^ ( . - ä ; 
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hence 

a ^ < ( l + | J ) X4 ( , - § „ ) X « - x ( l + S f i ) ( l - £ ) 

138. As further example may be considered the equations 
of an alternating-current electric circuit, containing distributed 
resistance, inductance, capacity, and shunted conductance, for 
instance, a long-distance transmission line or an underground 
high-potential cable. 

Let I be the distance along the line, from some start ing 
point ; E, the voltage; 1, the current a t point I, expressed as 
vector quanti t ies or general numbers; Zo=r0+jx0, the line 
impedance per uni t length (for instance, per mile); Yo=g0+jbo 
= line admit tance, shunted, per uni t length; tha t is, r 0 is the 
ohmic effective resistance; XQ, the self-inductive reactance; 
b0, the condensive susceptance, tha t is, wattless charging 
current divided by volts, and 00=energy component of admit
tance, tha t is, energy component of charging current, divided 
by volts, per unit length, as, per mile. 

Considering a line element dl, the voltage, dE, consumed 
by the impedance is Z0Idl, and the current, df, consumed by 
the admittance is YoEdl; hence, the following relations may be 
wr i t t en : 

(1 - 3s 2 ) X a (l + 2 ^ j ( .1 + s 2 ) X a 1 / 2 ( l - ^ 

Equations of the Transmission Line. 

(1) 

(2) 
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Differentiating (1), and substi tuting (2) therein gives 

A2È-ZYE 
dl2 

and from (1) it follows tha t , 

J_ dÈ 
• Z 0 di' 

Equat ion (3) is integrated by 

E = AeBl, 

and (5) substi tuted in (3) gives 

B=±VZ0Ytt; 

hence, from (5) and (4), it follows 

E = A i î + v ^ r f + A 2 s - V z i f a ; 

1^J^IA^*^2'™- A2e-^Z>Y<*1 

(?) 

(5) 

(6) 

(7) 

(8) 

Next assume 

l=lo, the entire length of line; 

Z = loZ0) the to ta l line impedance; [, . . . (9) 

and y " = Z 0 F 0 , the tota l line admit tance; 

then, substi tuting (9) into (7) and (8), the following expressions 
are obtained: 

E^Ais+^zr+Atc-^Y; 

(10) 

as the voltage and current a t the generator end of the line. 
139. If now E0 and I0 respectively are the current and 

voltage at the step-down end of the line, for ¿ = 0 , by sub
st i tut ing Z=0 into (7) and (8), 

A1+A2=E0; 

(11) 
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Substi tut ing in (10) for the exponential function, the series, 

24 

— ZY ZYVZY Z2Y2 Z2Y2VZY 

e±zy=i±vzT+-ñ-±—TT—+——±———+••• 120 
_ ( I + « l + ^ ) ± v W ( l + ^ + ^ ) , . . 0 » 

and arranging by (Ai + A2) and (Ai~ A2), and substi tuting 

herefor the expressions (11), gives 

ZY Z2Y2} „ j ZY Z2Y2} 
1+ir+i2(r} 

T T . ZY Z2Y2} T r r , f„ Z 2 F 2 1 

W « O + — + - 2 4 - } + Y B O | i + - G - + -120 }' 
(13) 

When l=—lo, tha t is, for E0 and 7 0 at the generator side, and 
Ei and {1 at the step-down side of the line, the sign of the 
second term of equations (13) merely reverses. 

140. From the foregoing, it follows tha t , if Z is the total 
impedance; Y, the total shunted admit tance of a transmission 
line, *E0 and 7o, the voltage and current at one end; Ex and h, 
the voltage and current a t the other end of the transmission 
line; then, 

J? ,=7io | l+Ç+^f}±Z7o 
ZY Z2Y2\ 

6

 + 120 J 

W o 
, ZY Z2Y2} „ _ r ZY Z2Y2 (14) 

where the plus sign applies if E0, 7 0 is the step-down end, 
the minus sign, if E0, I0 is the step-up end of the transmission 
line. 

In practically all cases, the quadratic term can be neglected, 
and the equations simplified, thus, 

Ei = E0 

W o 

1 + — J ± Zio 

7Y 

1 + 4 ^ \ ± YEo 

1 + 

1 + 

ZY 

6 

ZY (15) 
£2^2 

and the error made hereby is of the magnitude of less than 
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Except in the case of very long lines, the second term of 
the second term can also usually be neglected, which gives 

and the error made hereby is of the magnitude of less than — 
6 

of the Une impedance voltage and line charging current. 
141. Example. Assume 200 miles of 60-cycle line, on non-

inductive load of e0 = 100,000 volts; and in = 100 amperes. 
The line constants, as taken from tables are Z = 104+140/ ohms 
and Y=+0.0013/ ohms; hence, 

ZY~ - (0.182-0.1367); 

Ei = 100000(1-0.091+0.068/) +100(104+140/) 
= 101400+20800/, in volts ; 

11 = 100(1 - 0.091+0.068/)+0.0013/ X100000 
= 91+136.8/ , in amperes. 

I n Ei, the neglect of the second term of 2 / 0 = 17,400, gives 
an error of 0.038x17,400 = 660 volts = 0.6 per cent. 

In Ii, the neglect of the second term of yE0 = 130, gives an 
error of 0 . 0 3 8 x 1 3 0 = 5 amperes - 3 per cent. 

Although the charging current of the line is 130 per cent 
cf output current, the error in the current is only 3 per cent. 

Using the equations (15), which are nearly as simple, brings 
Z2y2 0 226 2 

^he error down to - ^ - = —^— = 0.0021, or less than one-quarter 

per cent. 

Hence, only in extreme cases the equations (14) need to be 

used. Their error would be less than ^ = 3.6X10 6 , or one 

three-thousandth per cent. 

(16) 

The error is 
zy 0.174 X 0.0013 0.226 
6 ~ 6 6 = 0.038. 
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The accuracy of the preceding approximation can be esti
mated by considering the physical meaning of Z and Y: Z 
is the line impedance; hence Z\ the impedance voltage, and 

ZÌ 
u=-jjj, the impedance voltage of the line, as fraction of total 

voltage: Y is the shunted admittance; hence YE the charging 
YÈ . ' 

current, and v=—j-, the charging current of the line, as fraction 

of total current. 
Multiplying gives uv=ZY; that is, the constant ZY is the 

product of impedance voltage and charging current, expressed 
as fractions of full voltage and full current, respectively. In 
any economically feasible power transmission, irrespective of 
its length, both of these fractions, and especially the first, 
must be relatively small, and their product therefore is a small 
quantity, and its higher powers negligible. 

In any economically feasible constant potential transmission 
Hne the preceding approximations are therefore permissible. 

Approximation by Chain Fraction. 

141A.—A convenient method of approximating numerical 
values is often afforded by the chain fraction. A chain fraction 
is a fraction, in which the denominator contains a fraction, which 
again in its denominator contains a fraction, etc. Thus: 

1 

2 + 1 
3 + 1 

1 + i 
4 

Only integer chain fractions, that is, chain fractions in which 
all numerators are unity, are of interest. 

A common fraction is converted into a chain fraction thusly: 
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511 = ? 

1152 ' 

511 = 1 = 1 
1152 1152 2 130 

511 + 511 

1 
2 + 1 2 + 1 

511 121 
130 + 130 

1 _ 1 
2 " + i " 2 + 1 

3 + J _ 3 + 1 
130 9 
121 ^ 121 

1 
2 + 1 2 + 1 

3 + 1 3 + 1 
1 + 1 r + 1 

1 
2 + 1 2 + 1 

3 + 1 3 + 1 
1 + 1 1 + 1 

1 3 + 1 1 3 + 1 

,9 » + i 
That is, to convert a common fraction into a chain fraction, 

the numerator is divided into the denominator, the residue 
divided into the divisor, and so on,until no residue remains. 
The successive quotients then are the successive denominators 
of the chain fraction. 

For instance: 
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511 = 

1152 

511/1152 = 2 
1022 
130 /511 = 3 

390 
121/130 = 1 

121 
9/121 = 13 

9 
31 
27. 
4 /9 = 2 

_8 
1/4 = 4 

hence: 
511 

1152 2 + 1 
3 + 1 

1 + 1 
13 + 1 

2 + 1 
4 

Inversely, the chain fraction is converted into a common 
fraction, by rolling it up from the end : 

4 4 

1 _ 4 

13 + l = 121 2+r9 

4 
1 9 
13 + 1 121 
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j 1 _ 130 
13 + i ~ 121 

1 _ 121 
J 4- 1 ~ 130 

13 4- 1 

3 + l _ 511 
1 + 1 ~ 130 

13 4- 1 

2 + i 

1 _ 130 
3 + 1 ~ 511 

1 + 1 
13 4- 1 

2 + 1 = 1152 
3 + 1_ 511 

1 + 1 
13 + 1 

1 _ _511_ 
2 + 1 ~ 1152 

3 + 1 
1 + 1 

13 + 1 

The expression of the numerical value by chain fraction gives a 
series of successive approximations. Thus the successive ap
proximation of the chain fraction: 
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1 511 
2 + 1 1152 

3 + 1 
1 + 1 

1 3 + 1 

2 + 

are: 

(1) 1 
2 

(2) 1 

2 + 

(3) 1 
2 + 1 

3 + 

(4) 1 
2 + 1 

1 
2 

3 
7 

4 
9 

55 
124 

= .5 

.42857 

.44444 

= .443548 

3 + 1 

(5) 1 
2 + 1 

i + jL 

13 

257 3 + 1 
1 + 1 

(6) 1 
2 + 1 

13 + 

511 
1152 .443576 

3 + 1 
1 + 1 

1 3 + 1 

difference: 

+ .0564 

%: 

+ 12.7% 

.0150 = - 3 . 4 % 

+ .00086 + .194% 

- .000028 = - .0068% 

= .443580. . . + . 0 0 0 0 0 4 = + . 0 0 0 9 % 

2 + 
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As seen, successive approximations are alternately above and 
below the true value, and the approach to the true value is 
extremely rapid. It is the latter feature which makes the chain 
fraction valuable, as where it can be used, it gives very rapidly 
converging approximations. 

141B.—Chain fraction representing irrational numbers, as 
T , e, etc., may be endless. Thus: 

*" = 3 + \- = 3.14159265 . . . 
7 + 1 

15 + 1 
1 + 1 

288 + 1 
1 + 1 

2 + 1 
1 + 1 

3 + 1 
1 + 1 

The first three approximations of this chain fraction of ir are: 

difference: = % 

( ] ) 3 + ~ = 3 1/7 = 3.142857 . . . + .00127 = + .043% 

(2) 3 + 1 = 3 1 5 / 1 0 6 = 3.1415094. . . - .0000832= - .0026% 

7 + Ï 5 

( 3 ) 3 + 1 = 3 16/113 = 3.1415929.. . + .0000003 
7 + 1 = + .000009% 

Ï 5 + ~ ï 
1 

As seen, the first approximation, 3 1/7, is already sufficiently 
close for most practical purposes, and the third approximation 
of the chain fraction is correct to the 6th decimal. 

144.—Frequently irrational numbers, such as square roots, 
can be expressed by periodic chain fractions, and the chain 
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V 6 + 2 

as ^ is > 1, it is again resolved into: 

V o + 2 _ 9 , V e - 2 
~ 2 ¿ + ~ ~ 2 

thus : 
V 6 = 2 + 1 

2 + ^ 2 

continuing in the same manner: 

Ve - 2 = (Ve - 2)(Ve + 2) = 2 i _ 

2 2 ( V 6 + 2) 2 ( V 6 + 2 ) ~ V 6 + 2 

hence: 
V o = 2 + 1 

2 + 1 

V 6 + 2 
and : 

V o + 2 = 4 + ( V o - 2) 
hence: 

fraction offers a convenient way of expressing numerical values 
containing square roots, and deriving their approximations. 

For instance: 
Resolve V 6 into a chain fraction. 
As the chain fraction is < 1, V 6 has to be expressed in the form : 

V 6 = 2 + (Ve - 2) ( i ) 

and the latter te rm: ( V ß — 2), which is < 1, expressed as chain 
fraction. 

To rationalize the numerator, we multiply numerator and 
denominator by ( V ß + 2) : 

( V 6 - 2) = ( V 6 - 2 X V 6 + 2) 2 _ = 1 
V 6 + 2 V o + 2 V 6 + 2 

2 
thus : 

V 6 = 2 
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V6 = 2 + 1 
2 + 1 

4 + ( \ / 6 - 2) 

and, as the term (-\/6 ~~ 2) appeared already at (1), we are here 
at the end of the recurring period, that is, the denominators now 
repeat : 

V 6 = 2 + 1 
2 + 1 

4 + 1 
2 + 1 

4 + ¡I 
2 + . 

a periodic chain fraction, in which the denominators 2 and 4 
alternate. 

In the same manner, 
s/2 = 1 + 1 with the periodic denominator 2 

2 ~ + l 

2 + 1 
2 + . 

\ / 3 = 1 + 1 with the periodic denominators 1 and 2 
r + i 

2 + 1 
1 + 1 

2 + • . 

\ / 5 = 2 + 1 with the periodic denominator 4 

4 T 1 
4 + 1 

4 + . 

This method of resolution of roots into chain fractions gives 
a convenient way of deriving simple numerical approximations 
of the roots, and hereby is very useful. 

For instance, the third approximation of is 1 M2, with an 
error of .2 per cent, that is, close enough for most practical 
purposes. Thus, the diagonal of a square with 1 foot as side, 
is very closely 1 foot 5 inches, etc. 



CHAPTER VI. 

EMPIRICAL CURVES. 

A . General. 

142. The results of observation or tests usually are plotted 
in a curve. Such curves, for instance, are given by the core 
loss of an electric generator, as function of the voltage; or, 
the current in a circuit, as function of the time, etc. When 
plotting from numerical observations, the curves are empirical, 
and the first and most important problem which has to be 
solved to make such curves useful is to find equations for the 
same, tha t is, find a function, J /=/(x) , which represents the 
curve. As long as the equation of the curve is not known its 
utility is very limited. While numerical values can be taken 
from the plotted curve, no general conclusions can be derived 
from it, no general investigations based on it regarding the 
conditions of efficiency, output, etc. An illustration hereof is 
afforded by the comparison of the electric and the magnetic 
circuit. In the electric circuit, the relation between e.m.f. and 

current is given by Ohm's law, 1 ' = p a n d calculations are uni
versally and easily made. In the magnetic circuit, however, 
the term corresponding to the resistance, the reluctance, is not 
a constant, and the relation between m.m.f. and magnetic flux 
cannot be expressed by a general law, but only by an empirical 
curve, the magnetic characteristic, and as the result, calcula
tions of magnetic circuits cannot be made as conveniently and 
as general in nature as calculations of electric circuits. 

If by observation or test a number of corresponding values 
of the independent variable x and the dependent variable y are 
determined, the problem is to find an equation, y=f(x), which 
represents these corresponding values: x\, Xi, x3 . . . xn, and 
2/1, v2> V3 • • • Vny approximately, tha t is, within the errors of 
observation. 

209 
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The mathematical expression which represents an empirical 
curve may be a rational equation or an empirical equation. 
I t is a rational equation if it can be derived theoretically as a 
conclusion from some general law of nature, or as an approxima
tion thereof, but i t is an empirical equation if no theoretical 
reason can be seen for the particular form of the equation. 
For instance, when representing the dying out of an electrical 
current in an inductive circuit by an exponential function of 
t ime, we have a rational equat ion: the induced voltage, and 
therefore, by Ohm's law, the current, varies proportionally to the 
rate of change of the current, t ha t is, its differential quotient, 
and as the exponential function has the characteristic of being 
proportional to its differential quotient, the exponential function 
thus rationally represents the dying out of the current in an 
inductive circuit. On the other hand, the relation between the 
loss by magnetic hysteresis and the magnetic density: W= J J B 1 - 6 , 
is an empirical equation since no reason can be seen for this 
law of the 1.6th power, except tha t it agrees with the observa
tions. 

A rational equation, as a deduction from a general law of 
nature, applies universally, within the range of the observa
tions as well as beyond it, while an empirical equation can with 
certainty be relied upon only within the range of observation 
from which it is derived, and extrapolation beyond this range 
becomes increasingly uncertain. A rational equation there
fore is far preferable to an empirical one. As regards the 
accuracy of representing the observations, no material difference 
exists between a rational and an empirical equation. An 
empirical equation frequently represents the observations with 
great accuracy, while inversely a rational equation usually 
does not rigidly represent the observations, for the reason tha t 
in nature the conditions on which the rational law is based are 
rarely perfectly fulfilled. For instance, the representation of a 
decaying current by an exponential function is based on the 
assumption tha t the resistance and the inductance of the circuit 
are constant, and capacity absent, and none of these conditions 
can ever be perfectly satisfied, and thus a deviation occurs from 
the theoretical condition, by what is called " secondary effects." 

143- To derive an equation, which represents an empirical 
curve, careful consideration should first be given to the physical 
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nature of the phenomenon which is to be expressed, since 
thereby the number of expressions which may be tried on the 
empirical curve is often greatly reduced. Much assistance is 
usually given by considering the zero points of the curve and 
the points at infinity. For instance, if the observations repre
sent the core loss of a transformer or electric generator, the 
curve must go through the origin, t ha t is, y = 0 for x = 0, and 
the mathematical expression of the curve y=f(x) can contain 
no constant term. Furthermore, in this case, with increasing x, 
y must continuously increase, so tha t for x = oo, y = o°. Again, 
if the observations represent the dying out of a current as 
function of the time, it is obvious tha t for x = 0 0 , t /=0 . In 
representing the power consumed by a motor when running 
without load, as function of the voltage, for x = 0, y cannot be 
= 0, but must equal the mechanical friction, and an expression 
like y — Ax* cannot represent the observations, but the equation 
must contain a constant term. 

Thus, first, from the nature of the phenomenon, which is 
represented by the empirical curve, it is determined 

(a) Whether the curve is periodic or non-periodic. 
(6) Whether the equation contains constant terms, tha t is, 

for x = 0, y ?==0, and inversely, or whether the curve passes 
through the origin: that is, y = 0 for x = 0, or whether it is 
hyperbolic; tha t is, j / = 0 0 for x = 0, or x= 0 0 for y=0. 

(c) What values the expression reaches for 0 0 . Tha t is, 
whether for x=ao, t/ = o°, or y=0, and inversely. 

(d) Whether the curve continuously increases or decreases, 0 1 
reaches maxima and minima. 

(e) Whether the law of the curve may change within the 
range of the observations, by some phenomenon appearing in 
some observations which does not occur in the other. Thus, 
for instance, in observations in which the magnetic density 
enters, as core loss, excitation curve, etc., frequently the curve 
law changes with the beginning of magnetic saturation, and in 
this case only the data below magnetic saturation would be used 
for deriving the theoretical equations, and the effect of magnetic 
saturation treated as secondary phenomenon. Or, for instance, 
when studying the excitation current of an induction motor, 
tha t is, the current consumed when running light, at low 
voltage the current may increase again with decreasing voltage, 
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instead of decreasing, as result of the friction load, when the 
voltage is so low tha t the mechanical friction constitutes an 
appreciable part of the motor output . Thus, empirical curves 
can be represented by a single equation only when the physical 
conditions remain constant within the range of the observations. 

From the shape of the curve then frequently, with some 
experience, a guess can be made on the probable form of the 
equation which may express it. In this connection, therefore, 
it is of the greatest assistance to be familiar with the shapes of 
the more common forms of curves, by plott ing and studying 
various forms of equations y=f{x). 

By changing the scale in which observations are plotted 
the apparent shape of the curve may be modified, and it is 
therefore desirable in plotting to use such a scale tha t the 
average slope of the curve is about 45 deg. A much greater or 
much lesser slope should be avoided, since it does not show the 
character of the curve as well. 

144- The most common non-periodic curves are the potential 
series, the parabolic and hyperbolic curves, and the exponential 
and logarithmic curves. 

Theoretically, any set of observations can be represented 
exactly by a potential series of any one of the following forms: 

B. Non-Periodic Curves. 

T H E POTENTIAL SERIES. 

y = a0 + aix+a2x2 +a3x3-f . . . ; ( 1 ) 

y = aix-\-a2x2 + axx3 + . . . ; (2) 

y=a»+-x-+x"2+J3+----
a.\ a2 a3 

(3) 

(4) 

if a sufficiently large number of terms are chosen. 
For instance, if n corresponding numerical values of x and y 

are given, xu yi; x2, y2; . . . x„, y„, they can be represented 
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T A B L E I. 

e 

1 0 0 - 1 

- 0 . 5 + 2x + 2 . 5 1 * - 1 . 5 x » + 1 . 5 1 * - 2 i « + i « 

0 . 4 0 . 6 3 - 0 . 5 + 0 . 8 + 0 . 4 - 0 . 1 0 + 0 . 0 4 - 0 . 0 2 0 

0 . 6 1 . 3 6 - 0 . 5 + 1 . 2 + 0 . 9 - 0 . 3 2 + 0 . 1 9 - 0 . 1 6 + 0 . 0 5 

0 . 8 2 . 1 8 - 0 . 5 + 1 . 6 + 1 . 6 - 0 . 7 7 + 0 . 6 1 - 0 . 6 5 + 0 . 2 6 

1 . 0 3 . 0 0 - 0 . 5 + 2 . 0 + 2 . 5 - 1 . 5 0 + 1 . 5 0 - 2 . 0 0 + 1 . 0 0 

1 . 2 3 . 9 3 - 0 . 5 + 2 . 4 + 3 . 6 - 2 . 5 9 + 3 . 1 1 - 4 . 9 8 + 2 . 8 9 

1 . 4 6 . 2 2 - 0 . 5 + 2 . 8 + 4 . 9 - 4 . 1 2 + 5 . 7 6 - 1 0 . 7 6 + 6 . 1 3 

1 . 6 8 . 5 9 - 0 . 5 + 3 . 2 + 6 . 4 - 6 . 1 4 + 9 . 8 3 - 2 0 . 9 7 + 1 6 . 7 8 

Let, for instance, the first column of Table I represent the 

voltage, "jQQ = a ; , m hundreds of volts, and the second column 

the core loss, fi=y, in kilowatts, of an 125-volt 100-h.p. direct-
current motor. Since seven sets of observations are given, 
they can be represented by a potential series with seven con
stants , thus , 

y=a0+a\X+a2x2+. . . +a&r 6 , . . . . (6) 

and by substituting the observations in (6), and calculating the 
constants a from the seven equations derived in this manner, 
there is obtained as empirical expression of the core loss of 
the motor the equation, 

y = _ 0 . 5 + 2 x + 2 . 5 x 2 - 1 . 5 x 3 + 1 . 5 x 4 - 2 x 5 + x 6 . . (7) 

This expression (7), however, while exactly representing 
the seven observations, has no physical meaning, as easily 
seen by plott ing the individual terms. In Fig. 60, y appears 

by the series (1), when choosing as many terms as required to 
give n constants o : 

y=a0+aix+a2x2 + . . . + a n _ i n n _ l . . . . (5) 

By substi tuting the corresponding values x\, y\; x2, y2,. . . 
into equation (5), there are obtained n equations, which de
termine the n constants ao, ßi, a2, . . . an_\. 

Usually, however, such representation is irrational, and 
therefore meaningless and useless. 
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as the resultant of a number of large positive and negative 
terms. Furthermore, if one of the observations is omitted, 
and the potential series calculated from the remaining six 
values, a series reaching up to x5 would be the result, thus, 

y=a0+aix+a2x2+.. .+Ü5X5, . . . . (8) 

16 

IS 

-X8 

•sai 

S* 

•S.SS •S.SS 

- 0 .5 

\* ̂  

X 
1 

V 
x= \ 

0 2 C 4 0 6 n 8 1 1 1 2 1 4 

FIG. 60. Terms of Empirical Expression of Excitation Power. 

but the constants a in ( 8 ) would have entirely different numer
ical values from those in (7), thus showing that the equation 
(7) has no rational meaning. 

145- The potential series (1) to (4) thus can be used to 
represent an empirical curve only under the following condi
t ions : 

1. If the successive coefficients a 0 , a-i, a 2 , . . . decrease in 
value so rapidly tha t within the range of observation the 
higher terms become rapidly smaller and appear as mere 
secondary terms. 
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2. If the successive coefficients a follow a definite law, 
indicating a convergent series which represents some other 
function, as an exponential, trigonometric, etc. 

3. If all the coefficients, a, are very small, with the exception 
of a few of them, and only the lat ter ones thus need to be con
sidered. 

T A B L E I I . 

X V v' v. 

0.4 0.89 0.88 0.01 
0.6 1.35 1.34 0.01 
0.8 1.96 1.94 0.02 

1.0 2.72 2.70 0.02 
1.2 3.62 2.59 0.03 
1.4 4.63 4.59 0.04 

1.6 5.76 5.65 0.11 

For instance, let the numbers in column 1 of Table I I 
represent the speed a: of a fan motor, as fraction of the rated 
speed, and those in column 2 represent the torque y, t ha t is, 
the turning moment of the motor. These values can be 
represented b}- the equation, 

y = 0.5 + 0.02a: + 2 .5z 2 -0.3x* + 0 . 015z 4 - 0 .02z 5 +0.01.^ . (9) 

In this case, only the constant term and the terms with 
x2 and Xs have appreciable values, and the remaining terms 
probably are merely the result of errors of observations, t ha t is, 
the approximate equation is of the form, 

y = ao+a2X?+a3x3 (10) 

Using the values of the coefficients from (9), gives 

2/ = 0 . 5 + 2 . 5 x 2 - 0 . 3 x 3 (11) 

The numerical values calculated from (11) are given in column 
3 of Table I I as t / , and the difference between them and the 
observations of column 2 are given in column 4, as y\. 
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The values of column 4 can now be represented by the same 
form of equation, namely, 

yi=bo+b2x
2 + b3x?, (12) 

in which the constants b0, b2, b3 are calculated by the method 
of least squares, as described in paragraph 120 of Chapter IV, 
and give 

t/i = 0.031 -0 .093X 2 +0.076X 3 (13) 

Equat ion (13) added to (11) gives the final approximate 
equation of the torque, as, 

2/0 = 0.531 +2 .407x2-0 .224x 3 (14) 

The equation (14) probably is the approximation of a 
rational equation, since the first term, 0.531, represents the 
bearing friction; the second term, 2.407x 2 (which is the largest), 
represents the work done by the fan in moving the air, a 
resistance proportional to the square of the speed, and the 
third term approximates the decrease of the air resistance due 
to the churning motion of the air created by the fan. 

In general, the potential series is of limited usefulness; it 
rarely has a rational meaning and is mainly used, where the 
curve approximately follows a simple law, as a straight line, 
to represent by small terms the deviation from this simple law, 
t ha t is, the secondary effects, etc. I ts use, thus , is often 
temporary, giving an empirical approximation pending the 
derivation of a more rational law. 

The Parabolic and the Hyperbolic Curves. 

146. One of the most useful classes of curves in engineering 
are those represented by the equation, 

y = axn; (15) 

or, the more general equation, 

2 / -ò = o ( x - c ) " (16) 

Equat ion (16) differs from (15) only by the constant terms 6 
and c; t h a t is, it gives a different location to the coordinate 
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Fig. 68. 7 1 = — y 

1 
y=7r 

Fig. 69. 7 1 = - 4 ; 
1 

Fig. 70. 7 1 = 

1 
~~2 ' 

1 
V X 

Fig. 71. 7 1 = 

1 
~ 4 ' 

1 
•Cx 

center, but the curve shape is the same, so t ha t in discussing 
ihe general shapes, only equation (15) need be considered. 

If n is positive, the curves y=axn are parabolic curves, 
passing through the origin and increasing with increasing x. 
If n > l , y increases with increasing rapidity, if n < l , y increases 
with decreasing rapidity. 

If the exponent is negative, the curves y = a x - n = — are 
xn 

hyperbolic curves, s tar t ing from y=ca for x = 0 , and decreasing 
to y=0 for x— oo. 

n = l gives the straight line through the origin, n = 0 and 
n=oo give, respectively, straight horizontal and vertical lines. 

Figs. 61 to 71 give various curve shapes, corresponding to 
different values of n. 

Parabolic Curves. 

Fig. 61. n = 2; y = x2; the common parabola. 

Fig. 62. n = 4; j / = x*; the biquadratic parabola. 

Fig. 63. n = 8 ; t/ = x 8 . 

Fig. 64. n = i ; j / = V x ; again the common parabola. 

Fig. 65. n = l ; y= ^x> the biquadratic parabola. 

Fig. 66. n = i ; y = Vx. 

Hyperbolic Curves. 

Fig. 67. n = — 1 ; y~~> * n e equilateral hyperbola. 
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FIG. 64. Parabolic Curve. y = Vx. 
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FIG. 65. Parabolic Curve. y= fy. 
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In Fig. 72, sixteen different parabolic and hyperbolic curves 
are drawn together on the same sheet, for the following values: 
n = l , 2, 4, 8, G O ; J, \ , 0; - 1 , - 2 , - 4 , - 8 ; -h, - \ , - | . 

147. Parabolic and hyperbolic curves may easily be recog
nized by the fact tha t if x is changed by a constant factor, y also 
changes by a constant factor. 

Thus, in the curve y = x2, doubling the x increases the y 
fourfold; in the curve y = x1-69, doubling the x increases the y 
threefold, etc. ; tha t is, if in a curve, 

y = / (* ) , 

f(qx) 
y^^y = constant, for constant g, . . . (17) 

the curve is a parabolic or hyperbolic curve, y = axn, and 

fiqx¿_a^xr_ 
fix) * ax" ~ q ^ 

If q is nearly 1, tha t is, the x is changed only by a small 
value, substituting q = l+s, where s is a small quanti ty, from 
equation (18), 

f(x+sx) . 
J - z = ( l + s ) " = l + n s ; 

m 
hence, 

f(x+sx)-f(x) 

m 
= ns; (19) 

t ha t is, changing x by a small percentage s, y changes oy a pro
portional small percentage ns. 

Thus, parabolic and hyperbolic curves can be recognized by 
a small percentage change of x, giving a proportional small 
percentage change of y, and the proportionality factor is the 
exponent n; or, they can be recognized by doubling x and 
seeing whether y hereby changes by a constant factor. 

As illustration are shown in Fig. 73 the parabolic curves, 
which, for a doubling of x, increase y: 2, 3, 4, 5, 6, and 8 fold. 

Unfortunately, this convenient way of recognizing parabolic 
and hyperbolic curves applies only if the curve passes through 
the origin, tha t is, has no constant term. If constant terms 
exist, as in equation (16), not x and y, but (x-c) and (y-b) 
follow the law of proportionate increases, and the recognition 
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becomes more difficult; t ha t is, various values of c and of b 
are to be tried to find one which gives the proportionality. 

QJt OA 0.6 0.8 1.0 L2 U U 
P I G . 72. Parabolic and Hyperbolic Curves. y=xn. 

148. Taking the logarithm of equation (15) gives 

log y = log a + n log x; (20) 
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t ha t is, a straight line ; hence, a parabolic or hyperbolic curve can 
be recognized by plotting the logarithm of y against the loga
r i thm of x. If this gives a straight line, the curve is parabolic 
or hyperbolic, and the slope of the logarithmic curve, tan 6 = n, 
is the exponent. 

m 
V BiO- i V 
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l .o i 
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1 ft I 9/ 

t-a È ITS 

§ 
3 - 9 
tai 

l_ f i 

tm 

/A 

V 

0*2' 

UJä 0.4 0.6 0.8 1.0 U 1.4 l i 
F I G . 73. Parabolic Curvea. ¡/=i". 

This again applies only if the curve contain no constant 
term. If constant terms exist, the logarithmic line is curved. 
Therefore, by t rying different constants c and 6, the curvature 
of the logarithmic line changes, and by interpolation such 
constants can be found, which make the logarithmic line straight, 
and in this way, the constants c and b may be evaluated. If 
only one constant exist, tha t is, only ò or only c, the process is 
relatively simple, but it becomes rather complicated with both 



226 ENGINEERING MATHEMATICS. 

constants . This fact makes it all the more desirable to get 
from the physical nature of the problem some idea on the 
existence and the value of the constant terms. 

Differentiating equation (20) gives : 

dy dx 

t ha t is, in a parabolic or hyperbolic curve, the percentual 
change, or variation of y, is n times the percentual change, 
or variation of x, if n is the exponent. 

Herefrom follows: 
dy 

dx 
x 

t ha t is, in a parabolic or hyperbolic curve, the ratio of variation, 
dy 
y 

m = — , is a constant, and equals the exponent n. 

x 

Or, inversely: 
If in an empirical curve the rat io of variation is constant 

the curve is—within the range, in which the ratio of variation 
is constant—a parabolic or hyperbolic curve, which has as 
exponent the ratio of variation. 

In the range, however, in wdiich the rat io of variation is 
not constant, it is not the exponent, and while the empirical 
curve might be expressed as a parabolic or hyperbolic curve 
with changing exponent (or changing coefficient), in this case 
the exponent may be very different from the ratio of varia
tion, and the change of exponent frequently is very much 
smaller than the change of the rat io of variation. 

This rat io of variation and exponent of the parabolic or 
hyperbolic approximation of an empirical curve must not be 
mistaken for each other, as has occasionally been done in 
reducing hysteresis curves, or radiation curves. They coincide 
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only in tha t range, in which exponent n and eoe Scient a of 
the equation y = axn are perfectly constant. If this is not 
the case, then equation (20) differentiated gives : 

dy da , , n 
— = — h log x an -\—dx, 
y a x 

and the ratio of variation thus is : 

dy 
y x da , dn 

m = ~r— = n-\ \-x iogx —; 
dx a x x 

x 

tha t is, the ratio of variation m differs from the exponent n. 

Exponential and Logarithmic Curves. 
149. A function, which is very frequently met in electrical 

engineering, and in engineering and physics in general, is the 
exponential function, 

y = aenx; (21) 

w hich may be written in the more general form, 

y—b = a e n < - x - c ) (22) 

Usually, it appears with negative exponent, tha t is, in the 
form, 

y = o e - ~ (23) 

Fig. 74 shows the curve given by the exponential function 
(23) for o = l ; rc = l ; tha t is, 

(24) 

as seen, with increasing positive x, y decreases to 0 at x= + 0 0 , 
and with increasing negative x, y increases to 0 0 at . r= — 00. 
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nx = log —; °a' 

-S.0 - 1 . 6 - 1 . 2 - 0 . 8 - 0 , 4 0 0 .4 0 .8 

F i g . 74. Exponential Function, y-
1.2 1.6 2 . 0 

150. The characteristic of the exponential function (21) is, 
t ha t an increase of x by a constant term increases (or, in (23) 
and (24), decreases) y by a constant factor. 

Thus, if an empirical curve, y=f{x), has such characteristic 
tha t 

f(x + q) 
- - c o n s t a n t , for constant q, . . . (26) 

The curve, y=e+x, has the same shape, except t h a t the 
positive and the negative side (right and left) are interchanged. 

Inverted these equations (21) to (24) may also be written 
thus, 
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the curve is an exponential function, y=aenx, and the following 
equation may be written : 

f(x + q) a £ n ( l + î ) 

J — i l = = £ng ( - 9 7 - ) 

fix) as™ K"'> 

Hereby the exponential function can easily be recognized, 
and distinguished from the parabolic curve ; in the former a 
constant term, in the latter a constant factor of x causes a 
change of y by a constant factor. 

As result hereof, the exponential curve with negative 
exponent vanishes, tha t is, becomes negligibly small, with far 
greater rapidity than the hyperbolic curve, and the exponential 

-to 
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— 0 : 4 
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0 , 4 0 . 8 1 . 2 1 . 6 2 . 0 2 . 1 2 . 8 3 . 2 3 . 6 4 . 0 

FIG. 75. Hyperbolic and Exponential Curves Comparison. 

function with positive exponent reaches practically infinite 
values far more rapidly than the parabolic curve. This is 
illustrated in Fig. 75, in which are shown superimposed 
the exponential curve, y=e~x, and the hyperbolic curve, 

94 
« = — — r r r , which coincides with the exponential curve 
" (x+1 .55) 2 ' 
a t x=0 and a t x — 1. 

Taking the logarithm of equation (21) gives l o g j / = l o g a + 
nx log e, t ha t is, log y is a linear function of x, and plotting 
log y against x gives a straight line. This is characteristic of 
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t he exponential functions, and a convenient method of recog
nizing them. 

However, both of these characteristics apply only if x and v, 
contain no constant terms. With a single exponential function, 
only the constant term of y needs consideration, as the constant 
term of x may be eliminated. Equat ion (22) may be writ ten 
t h u s : 

y— b = aen(x-É) 

^ A B ™ , (28) 

where A = a £ - n c is a constant . 
An exponential function which contains a constant term b 

would not give a straight line when plotting log y against x, 

FIG. 76. Exponential Functions. 
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but would give a curve. In this case then log (y—b) would be 
plotted against x for various values of b, and by interpolation 
that value of b found which makes the logarithmic curve a 
straight line. 

1 5 1 . While the exponential function, when appearing singly, 
is easily recognized, this becomes more difficult with com-

(1) y= e~x+o£e~lox 

(2) y=s~x 

( 3 ) 2/= s~x-o.ie~mx 

U) y=rx-o.srwx 

(5) y=s-x~sr^x 

( 6 ) y=e-x-isr10X 

L4 

US 

0.1 

-OA 

FIG. 77. Exponential Functions. 

binations of two exponential functions of different coefficients 
in the exponent, thus, 

y = alS-clI±a2£-ax, (29) 

since for the various values of a\, a2, ci, c 2, quite a number of 
various forms of the function appear. 

As such a combination of two exponential functions fre
quently appears in engineering, some of the characteristic form? 
are plotted in Figs. 76 to 78. 
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76 gives the following combinations of e~x and 

(1) y= s~ *+0.5r -2x-
7 

(2) y= £ ~ 
-2x-t 

(3) 2/ = g~ 
X • 

Í 

(4) y= E~ *-0 .2£" -2x-

(5) y= £ ~ * - 0 . ñ £ -
-2x. 

(6) y= e~ * - 0 . S e --2x. 

(7) y= e~ X £—2x 
ì 

(8) y= e~ •'-1.5s- - 2 x 

•pa 

/ f 2.0 
c o s h a: = l } £

+ * + £ - * [ 

s i n h i r = 1 | £ + a , - £ - a : ì 
h 8 

-b6 

1.4 

h2 

hO 

-OîS 

~(h6 

"(Mr 

c 
1* 

c « 0 8 1 0 1 2 1 4 

F I G . 78. Hyperbolic Functions. 
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Fig. 77 gives the following combination of s~* and s - 1 0 * : 

(1) y=e~*+0.5£-iox. 

(2) j y = e - « ; 

(3) J,= £ - « - 0 . 1 e - 1 0 * ; 

(4) 2 / = j - * _ O . 5 £ - I O Z . 

(5) j / = £ ~ a - _ £ - 1 0 r ; 

(6) • ( / = £ - * - L ö s - 1 0 * . 

fig- <"8 gives the hyperbolic functions as combinations of 
£ + T and £~ x thus , 

2/ = cosh x = A(£ + a : + £~ : c); 

?/=sinh x = £~»). 

C. Evaluation of Empirical Curves. 

152. In a t tempting to solve the problem of finding a mathe
matical equation, y=f(x), for a series of observations or tests, 
the corresponding values of x and y are first tabulated and 
plotted as a curve. 

From the nature of the physical problem, which is repre
sented by the numerical values, there are derived as many 
data as possible concerning the nature of the curve and of the 
function which represents it, especially a t the zero values and 
the values at infinity. Frequently hereby the existence or 
absence of constant terms in the equation is indicated. 

The log x and log y are tabulated and curves plotted between 
x, y, log x, log y, and seen, whether some of these curves is a 
straight line and thereby indicates the exponential function, or 
the parabolic or hyperbolic function. 

If cross-section paper is available, having both coordinates 
divided in logarithmic scale, and also cross-section paper having 
one coordinate divided in logarithmic, the other in common 
scale, x and y can be directly plotted on these two forms of 
logarithmic cross-section paper. Usually not much is saved 
thereby, as for the numerical calculation of the constants the 
logarithms still have to be tabulated. 
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If neither of the four curves: x, y; x, log y; log x, y; log x, 
l ogy is a straight line, and from the physical condition the 
absence of a constant term is assured, the function is neither 
an exponential nor a parabolic or hyperbolic. If a constant 
term is probable or possible, curves are plotted between x, 
y—b, logx , log (y—b) for various values of b, and if hereby 
one of the curves straightens out, then, by interpolation, 
t ha t value of & is found, which makes one of the curves a straight 
line, and thereby gives the curve law. A convenient way of 
doing this is : if the curve with log y (curve 0) is curved by angle 
a0 (a0 being for instance the angle between the tangents a t the 
two end points of the curve, or the difference of the slopes a t the 
two end points), use a value &„ and plot the curve with log 
(y~bi) (curve 1), and observe its curvature at. Then inter
polate a value b2, between bt and 0 , in proportion to the curva
tures al and a0, and plot curve with log (y — b2) (curve 2), and 
again interpolate a value b3 between b2 and either 6X or 0, which
ever curve is nearer in slope to curve 2, continue until either the 
curve with log (y — b) becomes a straight line, or an S curve and 
in this la t ter case shows t ha t the empirical curve cannot be 
represented in this manner. 

In this work, logarithmic paper is very useful, as it permits 
plott ing the curves without first looking up the logarithms, the 
la t ter being done only»,when the last approximation of b is 
found. I n the same manner , if a constant te rm is suspected in 
the x, t he value (x—c) is used and curves plotted for various 
values of c. Frequent ly the existence and the character of a 
constant te rm is indicated by the shape of the curve; for 
instance, if one of the curves plotted between x, y, log x, log y 
approaches straightness for high, or for low values of the ab
scissas, bu t curves considerably a t the other end, a constant 
te rm m a y be suspected, which becomes less appreciable at one 
end of the range. For instance, the effect of the constant c in 
(x—c) decreases wi th increase of x. 

Sometimes one of the curves may be a straight line a t one 
end, bu t curve a t the other end. This may indicate the presence 
of a t e rm, which vanishes for a part of the observations. In 
this case only the observations of the range which gives a 
straight line are used for deriving the curve law, the curve 
calculated therefrom, and then the difference between the 
calculated curve and the observations further investigated. 
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Such a deviation of the curve from a straight line may also 
indicate a change of the curve law, by the appearance of 
secondary phenomena, as magnetic saturation, and in this case, 
an equation may exist only for that part of the curve where the 
secondary phenomena are not yet appreciable. The same 
equation may then be applied to the remaining par t of the curve, 
by assuming one of the constants, as a coefficient, or an exponent, 
to change. Or a second equation may be derived for this part 
of the curve and one par t of the curve represented by one, the 
other by another equation. The two equations may then over
lap, and a t some point the curve represented equally well by 
either equation, or the ranges of application of the two equa
tions may be separated by a transition range, in which neither 
applies exactly. 

If neither the exponential functions nor the parabolic and 
hyperbolic curves satisfactorily represent the observations, 

x 
further tr ials may be made by calculating and tabulat ing — 

1/ X 7/ 

and —, and plott ing curves between x, y, —, '—. Also expressions 
as x2+by2, and (x—a)2+b(y— c) 2 , etc., may be studied. 

Theoretical reasoning based on the nature of the phenomenon 
represented by the numerical data frequently gives an indi
cation of the form of the equation, which is to be expected, 
and inversely, after a mathematical equation has been derived 
a tr ial may be made to relate the equation to known laws and 
thereby reduce it to a rational equation. 

In general, the resolution of empirical data into a mathe
matical expression largely depends on trial, directed by judg
ment based on the shape of the curve and on a knowledge of 
the curve shapes of various functions, and only general rules 
can thus be given. 

A number of examples may illustrate the general methods of 
reduction of empirical data into mathematical functions. 

153. Example 1. In a 118-volt tungsten filament incan
descent lamp, corresponding values of the terminal voltage e 
and the current i are observed, tha t is, the so-called " volt-
ampere characteristic " is taken, and therefrom an equation for 
the volt-ampere characteristic is to be found. 

The corresponding values of e and i are tabulated in the 
first two columns of Table I I I and plotted as curve I in 
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Fig. 79. In the third and fourth column of Table I I I are 
given log e and log i. I n Fig. 79 then are plotted log e, i, as 
curve I I ; e, log i, as curve I I I ; log e, log i, as curve IV . 

As seen from Fig. 79, curve I V is a straight line, tha t is 
0.2 0.4 0.6 0.8 1.0 12 i t 1.6 1.8 2:0 2.2 Z.i*=log e 

F I G . 79. Investigation of Volt-ampere Characteristic of Tungsten Lamp 
Filament. 

log i = A +n log e; or i =aen, 
which is a parabolic curve. 

The constants a and n may now be calculated from 
the numerical da t a of Table I I I by the method of leas* 
squares, as discussed in Chapter IV, paragraph 120. While 
this method gives the most accurate results, i t is so laborious 
as to be seldom used in engineering; generally, values of the 
cons tants a and n, sufficiently accurate for most practical 
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purposes, are derived by the so-called " 2A method," which, 
with proper tabular arrangement of the numerical values, gives 
high accuracy with a minimum of work. 

T A B L E I I I . 

VOLT-AMPERE CHARACTERISTIC OF 118-VOLT TUNGSTEN LAMP. 

e i log e log t 8-211+0-6 loge A 

2 0 0245 0-301 S-392 8 389 -0.003 
4 0 037 0-602 S-568 3 572 -0 004 
8 0 0568 0-903 8-754 S 753 + 0-001 

IS 0 0855 1-204 8-932 8 933 -0-001 
25 0 1125 1398 5-051 5 050 + 0-001 
32 0 1295 1-505 §•112 5 114 -0.002 

80 0 1715 1.699 5.234 9 230 + 0.004 
64 0 200 1.806 9.301 5 295 + 0.006 

100 0 2609 2.000 5.416 5 411 + 0.006 

125 0 2965 2.097 5-472 5 469 + 0.003 
150 0 3295 2-176 5-518 5 518 0 
180 0 3635 2-255 5-561 8 564 -0.00» 

200 0 3865 2-301 5-587 9 592 -0-005 
218 0 407 2-338 5-610 8 614 -0.004 

7-612 2-042 avg. ±0.003 
17= 14-973 8-465 4. 7 per cent 
A 7-361 4-422 

4-422_ 
n 7-361 0.6007~O -6 

214= 22-585 8-505 
0. BX22-585 13 551 

A = 8 505-13 551-ï. 954 
4-954-5-14 = 8-211 

log «'= -8 .211+0.6 log e and i~ 0.01625e*-' 

The fourteen sets of observations are divided into two 
groups of seven each, and the sums of log e and log i formed. 
They are indicated as 2 7 in Table I I I . 

Then subtracting the two groups 2 7 from each other, 
eliminates A, and dividing the two differences A, gives the 
exponent, » = 0 . 6 0 1 1 ; this is so near to 0.6 t ha t it is reasonable 
t o assume tha t n = 0 . 6 , and this value then is used. 

Now the sum of all the values of log e is formed, given as 
214 in Table I I I , and multiplied with n =0 .6 , and the product 
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subtracted from the sum of all the iogi. The difference Á 
then equals \\A, and, divided by 14, gives 

A = l o g a = 8.211; 

hence, a = 0.01625, and the volt-ampere characteristic of this 
tungsten lamp thus follows the equation, 

log¿ = 8.211 +0 .6 loge ; 

ï = 0.01625e 0- 6. 

From e and i can be derived the power input p = et, and the 

e 
resistance r = —: 

p = 0.01625e 1- 6; 

e 0 ' 4 

r 0.01625' 

and, eliminating e from these two expressions, gives 

p = 0.01625 s/- 4 = 11.35^ X 1 0 " 1 0 , 

tha t is, the power input varies with the fourth power of the 
resistance. 

Assuming the resistance r as proportional to the absolute 
temperature T, and considering tha t the power input into the 
lamp is radiated from it, t ha t is, is the power of radiation Pr, 
the equation between p and r also is the equation between Pr 

and T, thus , 
PT = kT*; 

that is, the radiation is proportional to the fourth power of the 
absolute temperature. This is the law of black body radiation, 
and above equation of the volt-ampere characteristic of the 
tungsten lamp thus appears as a conclusion from the radiation 
law, tha t is, as a rational equation. 

154. Example 2. I n a magnetite arc, a t constant arc length, 
the voltage consumed by the arc, e, is observed for different 
values of current i. To find the equat ion of the vo l t ampere 
characteristic of the magneti te arc : 
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T A B L E IV. 

VOLT-AMPERE CHARACTERISTIC OF MAGNETITE ARC. 

» e l o g i l o g e (e-40) l o g (e-40) (e-30) l o g (e-30) ec à 

0.5 180 9 699 2 204 120 2-079 130 2 114 158 -2 
1 120 0 000 2 079 80 1-903 80 1 954 120- 4 + 0 4 
a 94 0 301 1-973 54 1-732 64 1 806 94 0 

4 75 0 602 1-875 35 1-544 45 1-653 75-2 + 0 2 
8 62 0 903 1792 22 1-342 32 1-505 62 0 

12 56 1079 1-748 16 1204 26 1-415 58-2 + 0 2 

-0-000 5 874 
23-2-584 4-573 

¿ = 2 - 5 8 4 -1-301 

•£6 = 2-cr 10-447 
2 58< X - 0 - 5 =-1-292 

d= 11-739 
11 789 + 6= 1-956= ' 

l o g (e-30) = l . 9 5 6 - 0 . 5 l o g t 
9 0 4 

e-30 =90.4t- 0 5
 a n d e = 3 0 + 

The first four columns of Table IV give i, e, log i, log e. 
Fig. 80 gives the curves: i, e, as I; i, loge, as I I ; log t , e, as 
I I I ; log i, log e, as IV. 

Neither of these curves is a straight line. Curve IV is 
relatively the straight est, especially for high values of e. This 
points toward the existence of a constant term. The existence 
of a constant term in the arc voltage, the so-called " counter 
e.m.f. of the arc " is physically probable. In Table IV thus 
are given the values (e —40) and log ( e - 4 0 ) , and plotted as 
curve V. This shows the opposite curvature of IV. Thus the 
constant term is less than 40. Estimating by interpolation, and 
calculating in Table IV ( e - 3 0 ) and log ( e - 3 0 ) , the latter, 
plotted against log i gives the straight Ime VI. The curve law 
thus is 

log ( e - 3 0 ) = A+n log i. 
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Proceeding in Table IV in the same manner wi th log i 
and log (e—30) as was done in Table I I I with loge and hgi, 
gives 

n = - 0 . 5 ; A = log o = 1.956; and a = 90.4; 

FIG. 8 0 . Investigation of Volt-ampere Characteristic of Magnetite Arc. 

hence 

log ( e - 3 0 ) = 1.956-0.5 log i; 
e - 3 0 = 90.4i ' -°5; 

90.4 
e = 3 0 + 
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which is the equation of the magnetite arc volt-ampere charac
teristic. 

155. Example 3. The change of current resulting from a 
change of the conditions of an electric circuit containing resist
ance, inductance, and capacity is recorded by oscillograph and 
gives the curve reproduced as I in Fig. 81. From this curve 

log 

0.3 

\ s >—-i [\ 
i 

A \ 
\ 
\ f»_A 

0 \ \ II 

\- \ v 
1*6 

1 O A 
1 \ 

\ l \ s —0í8' 

tt4~ 

0 4 0 8 1 2 
t 

1 6 2 n 2. 4 2 S 

FIG. 81. Investigation of Curve of Current Change in Electric Circuit. 

are taken the numerical values tabulated as t and i in the first 
two columns of Table V. In the third and fourth columns are 
given log i and log i , and curves then plotted in the usual 
manner. Of these curves only the one between t and l og i 
is shown, as I I in Fig. 81 , since it gives a straight line for the 
higher values of t. For the higher values of /, therefore, 

logi^A — nt; or, i = as~nt; 

tha t is, it is an exponential function. 
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T A B L E V . 

TRANSIENT CURRENT CHARACTERISTICS. 

( i l o g t l o g i l'i i' 1 , -
t , l o g t ' 

12 ic â 

0 2 . 1 0 — 0 - 3 2 2 4 . 9 4 2 - 8 4 0 0 . 4 6 1 2 . 8 5 2 0 9 - 0 . 0 1 

0 . 1 2 . 4 8 9 - 0 0 0 0 - 3 9 4 4 . 4 4 1 9 6 0 - 1 0 . 2 9 1 . 9 4 2 5 0 + 0 . 0 2 

0 - 2 2 . 8 6 9 . 301 0 - 4 2 5 3 . 9 8 1 . 3 2 0 - 2 0 . 1 2 1 1 . 3 3 2 6 8 0 

0 4 2 . 5 8 9 6 0 2 0 - 4 1 2 3 . 2 1 0 . 6 3 0 - 4 5 - 7 9 9 0 - 6 1 2 - 6 0 + 0 . 0 2 

0 . 8 2 . 0 0 9 . 9 0 3 0 3 0 1 2 . 0 9 0 . 0 9 0 8 8 -954 0 . 1 3 1 . 9 6 - 0 . 0 4 

1 . 2 1 . 3 6 0 0 7 9 0 - 1 3 4 1 . 3 6 0 — — 0 0 3 1 . 3 3 - 0 . 0 3 

1 6 0 . 9 0 0 - 2 0 4 5 - 9 5 4 0 . 8 9 - 0 . 0 1 — — 0 - 0 1 0 . 8 8 - 0 . 0 2 

2 0 , 0 . 5 8 0 . 3 0 1 5 - 7 6 3 0 . 5 8 0 — — — 0 . 5 8 0 

2 - 5 0 . 3 4 0 . 3 9 8 5 - 5 3 1 0 . 3 4 0 — — 0 . 3 4 0 

3 - 0 0 . 2 0 0 . 4 7 7 9 -301 0 . 2 0 0 0 . 2 0 0 

i s = 4 . 8 8 . 8 5 1 I - 0 . 1 0 . 7 5 3 

4 . 8 

3 
= 1 . 6 

S . 8 5 1 _ 

3 
9 . 9 5 0 Ii - 0 . 6 9 - 9 2 0 

- T 2 = 5 . 5 5 . 8 3 2 á = 0 5 - 0 . 8 3 3 

5 J 

2 
= 2 . 7 5 

I . 8 3 2 _ 

2 
9 - 4 1 6 l o g i X O - 5 = 0 - 2 1 7 

J - 1 . 1 5 

l o g t X 1 . 1 5 = 0 . 4 9 9 

0 . 5 3 4 - 0 
712= 

0 . 

8 3 3 

2 1 7 
- 3 . 8 4 

n i = — 
0 5 3 4 

0 . 4 9 9 
= - 1 . 0 7 I 4 = 0 7 0 . 6 7 3 

712 l o g t X 0 - 7 = = - 1 - 1 6 7 

i s = 1 0 . 3 3 . 6 8 3 A- = 1 . 8 4 0 

1 0 . 3 X m l o g e = - 4 . 7 8 4 1 . 8 4 0 • ¡ - 4 = 0 . 4 6 0 — A i — l o g a i 

i = 3 . 4 6 7 <M=2.85 

3 . 4 8 7 + 5 = 0 . 6 9 3 = - l i = l o g a i l o g ¿2=0 . 4 6 0 - 3 . 8 4 ' l o g 1 
« t = 4 . 9 4 1 2 = 2 . 8 5 £ - 3 - M Í ¡ 

l o g ¿1 = 0 . 6 9 3 - 1 . 0 7 Í l o g e 

ñ = 4 . 9 4 e — i - f í í 

I . _— . _ _ _ _ I 

To calculate the constants a and n, the range of values I-
used, in which the curve I I is straight; tha t is, from < = 1.2 
to i = 3. As these are five observations, they are grouped in two 
pairs, the first 3, and the last 2, and then for t and log i, one-
third of the sum of the first 3, and one-half of the sum of the 
last 2 are taken. Subtracting, this gives, 

J i = 1.15; A log i= - 0 . 5 3 4 . 

Since, however, the equation, i = as'nt, when logarithmated, 
gives 

l o g i = l o g a — n t log e, 

thus à log i = — n log eJL 
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it is necessary to multiply M by log £ = 0.4343 before dividing it 
into log i to derive the value of n. This gives n = 1.07. 

Taking now the sum of all the five values of t, multiplying it 
by log £, and subtracting this from the sum of all the five value" 
of log i, gives 5A =3.467; hence 

A = l o g a = 0.693, 

a = 4.94, 

and log n = 0.693 -1.07« log £; 

ñ = 4 . 9 4 £ - 1 0 7 í . 

The current ix is calculated and given in the fifth column 
of Table V, and the difference i' = J = t\ —i in the sixth 
column. As seen, from ¿=1.2 upward, ii agrees with the 
observations. Below ¿=1.2, however, a difference i' remains, 
and becomes considerable for low values of t. This difference 
apparently is due to a second term, which vanishes for higher 
values of t. Thus, the same method is now applied to the 
term i'; column 8 gives log i ' , and in curve I I I of Fig. 81 is 
plotted log t ' against t. This curve is seen to be a straight 
line, t ha t is, i' is an exponential function of t. 

Resolving i' in the same manner, by using the first four 
points of the curve, from ¿ = 0 to ¿ = 0.4, gives 

l o g i 2 = 0.460-3.84¿log e; 

i2 = 2.85s'3Mt-

and, therefore, 

i=t\ _ t 2 = 4.94 £ - 1 0 7 í - 2.85e-3Mt 

is the equation representing the current change. 
The numerical values are calculated from this equation 

and given under ic in Table V, the amount of their difference 
from the observed values are given in the last column of this 
table. 

A still greater approximation may be secured by adding 
the calculated values of i2 to the observed values of i in the 
last five observations, and from the result derive a second 
approximation of and by means of this a second approxi
mation of ¿2 . 
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156. As further example may be considered the resolution 
of the core loss curve of an electric motor, which had been 
expressed irrationally by a potential series in paragraph 144 
and Table I . 

T A B L E VI. 

CORE LOSS CURVE. 

e 
V o l t s . Pi k w . l o g e l o g Pi 1 - 6 l o g e A- l o g P i 

- 1 . 8 l o g e Pc Â 

4 0 0 6 3 1 6 0 2 9 7 9 9 2 6 6 3 1 2 3 6 0 7 0 - 0 0 7 

6 0 1 3 6 1 7 7 8 0 1 3 4 2 8 4 9 1 2 8 9 1 - 3 4 + 0 0 2 

8 0 2 1 8 1 . 9 0 3 0 . 3 3 8 3 0 4 5 ? 2 9 3 a v g . 2 1 2 + 0 0 6 

1 0 0 3 0 0 2 . 0 0 Ö 0 / 4 7 7 3 2 0 0 7 2 7 7 7 - 2 8 2 3 0 3 - 0 0 3 

1 2 0 3 9 3 2 . 0 7 9 0 . 5 9 4 3 3 2 6 7 2 6 8 j 4 . 0 5 - 0 1 2 

1 4 0 6 2 2 2 . 1 4 6 Ö . 7 9 4 3 4 3 4 7 3 6 0 5 . 2 0 + 1 0 2 

1 6 0 8 6 9 2 . 2 0 4 0 9 3 4 3 5 2 6 7 4 0 8 6 - 4 3 + 2 1 6 

2 3 - 5 2 8 3 0 2 7 1 

^ 3 + 8 = 1 7 6 1 0 0 9 0 

2 2 = 4 0 7 9 1 0 7 1 

^ 2 + 2 = 2 0 3 9 5 0 5 3 5 

J-0 2 7 8 5 0 4 4 5 

0 
n = — 

4 4 5 
- 1 5 9 8 ~ l - 6 

0 2 7 8 5 

l o g F , = 7 . 2 8 2 + 1 6 l o g c 

Pi" 1 . 9 1 4 e 1 8 , i n w a t t s 

The first two columns of Table VI give the observed values 
of the voltage e and the core loss Pi in kilowatts. The next 
two columns give log e and log P,-. Plotting the curves shows 
t ha t log e, log P i is approximately a straight line, as seen in 
Fig. 82, with the exception of the two highest points of the 
curve. 

Excluding therefore the last two points, the first five obser
vations give a parabolic curve. 

The exponent of this curve is found by Table VI as 
n = 1 . 5 9 8 ; t ha t is, with sufficient approximation, as n = 1 . 6 . 

To see how far the observations agree with the curve, as 
given by the equation, 

P < = a e " 

in the fifth column 1.6 log e is recorded, and in the sixth column, 
A = l o g o = l o g P < — 1 . 6 l o g e . As seen, the first and the last 
two values of A differ from the rest. The first value corre-
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sponds to such a low value of Pi as to lower the accuracy of 
the observation. Averaging then the four middle values, 
gives A =7.282; hence, 

logP»=7.282 + 1.6 loge, 

P i =1.914e 1 - 6 ' in wat ts . 

1.8 1.7 1.8 1.9 2.0 8.1 i& 

log Pi 
lo je P, 

/ kw. 
-ÍW) 

0&-

-8-0 0:6" 

TO 0:4-

¡I1 s r 
\<& i 

Á 0:2" ,A>.0 

-5:0 0:0" -5:0 

~to 
9T8-

9. 

~2;0 

4 ) 6 ) 8 ) li 
>lts 

L 1 0 1ft 

FIG. 82. Investigation of Cuvres. 

This equation is calculated, as Pc, and plotted in Fig. 82. 
The observed values of Pi are marked by circles. As seen, 
the agreement is satisfactory, with the exception of the two 
highest values, a t which apparently an additional loss appears, 
which does not exist a t lower voltages. This loss probably is 
due t o eddy currents caused by the increasing magnetic s t ray 
field resulting from magnetic saturation. 
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157. As a further example may be considered the resolution 
of the magnetic characteristic, plotted as curve I in Fig. 83, 
and given in the first two columns of Table VII as H and B. 

TABLE VII . 

MAGNETIC CHARACTERISTIC. 

H 
B 

kilolines log H log B B 
H 

H 
B 

Be i 

a 3 0 0 3 0 1 0 - 4 7 7 1 - 5 0 6 6 7 6 4 + 3 4 

4 8 4 0 6 0 2 0 9 2 4 2 - 1 0 - 4 7 6 9 - 7 + 1 - 3 

6 11.a 0 7 7 8 1 - 0 4 9 1 - 8 6 7 0 - 5 3 6 1 1 - 6 + 0 4 

8 1 3 . 0 0 9 0 3 1 1 1 4 1 - 6 2 5 0 6 1 4 1 3 0 0 

1 0 1 4 0 1 0 0 0 1 - 1 4 6 1 4 0 0 7 1 5 1 3 - 9 - 0 1 
I S 1 5 4 1 1 7 6 1 1 8 8 1 - 0 3 3 0 9 7 4 1 5 - 4 5 + 0 0 5 

2 0 1 6 3 1 - 3 0 1 1 - 2 1 2 0 8 1 5 1 2 2 7 1 6 - 3 0 

3 0 1 7 - 2 1 - 4 7 7 1 - 2 3 6 0 5 7 3 1 - 7 4 1 7 3 + 0 1 

4 0 1 7 - 8 1 6 0 2 1 - 2 5 0 0 4 4 5 2 . 2 5 1 7 8 0 

8 0 1 8 5 1 - 7 7 8 1 - 2 6 7 0 3 0 8 3 . 2 5 1 8 - 4 - 0 1 
8 0 1 8 8 1 - 9 0 3 1 - 2 7 4 0 2 3 5 4 . 2 5 1 8 8 0 

2 4 - 5 3 

2 4 = 2 1 0 

¿ = 1 5 7 

28=261 

7 - 9 6 

1 5 7 " 
• 0 - 0 5 0 7 = ! > 

3 - 5 3 0 

4 9 

1 5 
2 6 3 X 0 - 0 5 0 7 = 1 3 

1 . 6 8 6 + 8 = 

96 

0 2 0 

3 3 4 

— = 0 - 2 1 1 + 0 0 5 0 7 # and B= 

B 

6 8 6 

2 1 1 ' 

H 
0 2 1 1 + 0 O 5 0 7 Ä 

Plotting H, B, log H, log B against each other leads to no 
results, neither does the introduction of a constant term do 
this. Thus in the fifth and sixth columns of Table VII are 

B H 
calculated — and and are plotted against H and against B. 

ti ti 
jj 

Of these four curves, only the curve of -g against H is shown 
in Fig. 83, as I I . This curve is a straight Une with the exception 
of the lowest values; tha t is, 

H 

B 
=a+bH. 
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Excluding the three lowest values of the observations, as 
not lying on the straight line, from the remaining eight values, 
as calculated in Table VII, the following relation is derived, 

- ¿ = 0.211 +0.0507 fl, 

i 0 

3.5 

3.0 

B 
2:5— 

— • k — 

20' 

? n 

i 

&.U 1G 

1.5 "¿ñi2 
<u 
c 

i n r K
il

o
-

o 

• 4 

i i 2 1 E a 4 r J n e T 3 S ) 

F I G . 83. Investigation of Magnetization Curve. 

and herefrom, 

0.211+0.0507 H 

is t he equation of the magnetic characteristic for values of / / 
from eight upward. 

The values calculated from this equation are given as B, 
in Table V U 
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The difference between the observed values of —, and the 
D 

value given by above equation, which is appreciable up to 
H=6, could now be further investigated, and would be found 
to approximately follow an exponential law. 

As a final example may be considered the investigation of 
a hysteresis curve of silicon steel, of which the numerical values 
are given in columns 1 and 2 of Table VI I I . 

The first column gives the magnetic density B, in lines of 
magnetic force per cm. 2 ; the second column the hysteresis loss 
w, in ergs per cycle per kg. (specific density 7.5). The third 
column gives log B, and the fourth column log w. 

Of the four curves between B, w, log B, log w, only the 
curve relating log w to log B approximates a straight line, and 
is given in the upper par t of Fig. 84. This curve is not a 
straight line throughout its entire length, but only two sections 
of it are straight, from B = 50 to . 5=400 , and from £ = 1600 to 
# = 8 0 0 0 , but the curve bends between 500 and 1200, and above 
8000. 

Thus two empirical formulas, of the form: w=aBn, are 
calculated, in the usual manner, in Table VI I I . The one 
applies for lower densities, the other for medium densities: 

Low densi ty : £ $ 4 0 0 : w = 0 . 0 0 3 4 l £ 2 - n 

Medium dens i ty : 1 6 0 0 S B ^ 8 0 0 0 : w=0 .1096B 1 - 6 0 

I n Table VI I I the values for the lower range are denoted 
by the index 1, for the higher range by the index 2. 

Neither of these empirical formulas applies strictly to the 
range: 4 0 0 < B < 1600, and to the range £ > 8 0 0 0 . They may 
be applied within these ranges, by assuming either the coefficient 
a as varying, or the exponent n as varying, tha t is, applying a 
correction factor to a, or to n. 

Thus, in the range: 4 0 0 < B < 1600, the loss may be repre
sentee! b y : 

(1) An extension of the low density formula: 

w = O i ß 2 1 1 or w=0.0034LB"i. 

(2) An extension of the medium density formula 

w=a,Bia or M>=0.1096£"», 
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FIG. 8 4 . 

The percentage correction, which is to be applied to oi and 
0 2 respectively, to «i and n2, to make the formulas applicable 

by giving tables or curves of a respectively n. Such tables are 
most conveniently given as a percentage correction. 
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T A B L E V i l i . 
HYSTERESIS OF SILICON STEEL. 

logB 
Jai Jai ¿ N I ¿712 

B w logB log io OL m 712 NI NA m 
/il % % % 

ss 8 . 4 1 . 5 4 4 0 . 8 0 6 + 3 . 0 — + 0 . 4 8 — 2 . 1 2 0 — — 

5 0 1 3 1 . 6 9 9 1 . 1 1 7 - 0 . 2 - 0 . 0 3 — 2 . 1 0 9 — 2 . 0 3 

6 0 1 9 1 . 7 7 8 1 . 2 7 9 - 1 . 1 — - 0 . 1 3 — 2 . 1 0 7 — 2 . 1 4 

8 0 3 6 1 . 9 0 3 1 . 5 5 6 + 1 . 9 — + 0 . 2 0 — 2 . 1 1 4 — 2 . 1 2 

1 0 0 5 7 2 . 0 0 0 ] . 7 5 2 - 0 . 2 — - 0 . 0 2 — 2 . 1 1 0 — 2 . 0 9 

1 2 0 8 3 2 . 0 7 9 1 . 9 2 2 + 0 . 7 — + 0 . 0 7 — 2 . 1 1 1 2 . 1 6 

1 8 0 1 5 8 2 . 2 0 4 2 . 1 9 3 + 2 . 8 + 0 . 2 1 2 . 1 1 4 — 2 . 1 0 

2 0 0 2 4 5 2 . 3 0 1 2 3 8 9 + 0 . 2 — + 0 . 0 2 — 2 . 1 1 0 — 2 . 0 7 

2 5 0 3 9 4 2 . 3 9 8 2 . 5 9 5 + 0 . 7 — + 0 . 0 6 — 2 . 1 1 1 — 2 . 0 3 

3 0 0 5 7 1 2 . 4 7 7 2 . 7 5 7 - 0 . 5 — - 0 . 0 4 — 2 . 1 0 9 — 1 . 9 8 

4 0 0 1 0 2 5 2 . 6 0 2 3 . 0 1 1 - 2 . 7 — - 0 . 2 2 — 2 . 1 0 5 2 . 0 3 

5 0 0 1 6 1 0 2 . 6 9 9 3 . 2 0 7 - 4 . 7 - 2 9 . 5 - 0 . 3 7 - 3 . 5 2 2 . 1 0 2 1 . 5 4 4 2 . 0 2 

eoo 2 3 2 0 2 . 7 7 8 3 . 3 6 6 - 6 . 2 - 2 4 . 0 - 0 . 8 7 - 2 . 6 8 2 . 0 9 2 1 . 5 5 7 1 . 9 6 

. 8 0 0 4 0 3 0 2 . 9 0 3 3 . 6 0 5 - 1 6 . 5 - 1 5 . 8 - 1 . 1 7 - 1 . 7 2 2 . 0 8 5 1 . 5 7 3 1 . 9 1 

looo 6 1 5 0 3 . 0 0 0 3 . 7 8 9 - 1 5 . 7 - 1 1 . 1 - 1 . 1 4 - 1 . 0 6 2 . 0 8 6 1 . 5 8 3 1 . 8 9 

1 2 0 0 8 6 8 0 3 . 0 7 9 3 . 9 3 8 - 1 8 . 7 - 6 . 0 - 2 . 0 2 - 0 . 5 5 2 . 0 6 7 1 . 5 9 1 2 1 . 8 2 

1 6 0 0 1 4 3 7 0 3 . 2 0 4 4 . 1 5 7 - 2 6 . 9 - 2 . 0 - 0 . 1 8 — 1 . 5 9 7 1 1 . 7 3 

2 0 0 0 2 1 0 0 0 3 . 3 0 1 4 . 3 2 2 — 0 . 0 — 0 . 0 0 — 1 . 6 0 0 0 1 . 6 7 

2 5 0 0 3 0 3 0 0 3 . 3 9 8 4 . 4 8 1 — + 0 . 9 — + 0 . 0 7 — 1 . 6 0 1 1 1 . 6 2 

3 0 0 0 4 0 5 0 0 3 . 4 7 7 4 . 6 0 7 — + 1 . 2 — + 0 . 0 9 — 1 . 6 0 1 4 1 . 5 8 

4 0 0 0 6 3 4 0 0 3 . 6 0 2 4 . 8 0 2 — - 0 2 — - 0 . 0 2 — 1 . 5 9 9 7 1 . 5 8 

5 0 0 0 9 0 6 0 0 3 8 9 9 4 . 9 5 7 — - 0 . 2 — - 0 . 0 2 — 1 . 5 9 9 7 1 . 5 9 

6 0 0 0 1 2 0 6 0 0 3 . 7 7 8 5 . 0 8 2 — - 0 . 9 — - 0 . 0 7 — 1 . 5 9 8 9 1 . 6 1 

8 0 0 0 1 9 4 1 0 0 3 . 9 0 3 5 . 2 8 8 — + 0 . 7 — + 0 . 0 5 — 1 . 6 0 0 8 1 . 6 6 

1 0 0 0 0 2 8 2 5 0 0 4 . 0 0 0 5 . 4 5 1 — + 2 . 6 — + 0 . 1 7 — 1 . 6 0 2 7 1 . 7 7 

1 2 0 0 0 3 9 7 5 0 0 4 . 0 7 9 5 . 5 9 9 — + 7 . 9 — + 0 . 5 0 — 1 . 6 0 8 0 2 . 3 2 

1 4 0 0 0 8 0 9 5 0 0 4 . 1 4 8 5 . 7 8 5 — + 2 7 . 7 — + 1 . 6 7 — 1 . 6 2 6 7 2 8 8 

1 6 0 0 0 9 0 7 5 0 0 4 . 2 0 4 5 9 5 8 — + 4 5 . 9 ! - + 2 . 8 5 — 1 . 8 4 5 6 

-2 s = 9 . 4 5 9 7 . 6 2 6 

• 2 4 = 1 1 . 9 8 2 1 2 . 9 4 5 

¿ = 2 . 5 2 3 5 . 3 1 9 

5 . 3 1 9 

— 2T52Í= 2 1 1 

2 i o = 2 1 . 4 4 1 2 0 . 5 7 1 

2 . 1 1 X 2 1 . 4 4 1 = 4 5 . 2 4 1 

¿ = - 2 4 . 6 7 0 log » = 7 . 5 3 3 + 2 . 1 1 logB 
+ 1 0 = - 2 . 4 6 7 

= 7 . 5 3 3 =logai « " = " 0 . 0 0 3 4 1 . 0 

ai = 0 . 0 0 3 4 1 

2 i = 1 3 . 3 8 0 1 7 . 5 6 7 

-í"»-14 . 9 8 2 2 0 . 1 2 9 

¿ = 1 . 6 0 2 

2 . 5 6 2 

1 . 6 0 2 

i» = 2 8 . 3 6 2 3 7 . 6 9 6 

1 . 6 0 X 2 8 . 3 6 2 = 4 5 . 3 7 9 

m=-

2 . 5 6 2 

1 . 5 9 9 ~ 1 . 6 0 

¿ = — 7 . 6 8 3 

^ 8 0 . 9 6 0 

- 5 . 0 4 0 = 

< n = 0 . 1 0 9 6 

log ai 

log u> = 8 . 0 4 0 + 1 . 8 0 log B 

«o=o . í t m B 1 ' ' 
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to the ranges where the logarithmic curve is not a straight 
line, are given in Table VI I I as 

Jai Aa,2 An,\ Jn2 

ai' a-2 ' ni' n2' 

they are calculated as follows: 
Assuming n as constant, = no, then a is not constant, —ao, 

and the rat io: 
Ja a 
a ao 

is the correction factor, and it is : 

w = aBn°, 

log w = log a + no log B 

log o = log w —n0 log B; 

hence 

and 

thus : 

and 

log — = log a —log ao = log w —log oo —no log B, 
ao 

Ja a 
- = 1 =iVlog w— log a 0— n0 l o g ß — 1 . . (1) 

a ao 

Assuming a as constant, =ao, then n is not constant, =no, 
and the ratio, 

An n 
n n0 ' 

is the correction factor, and it is 

hence 
w=a0Bn; 

log w=log o o + n log B, 
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and 
n log B log w - log ao; 

thus 

n n log B log w — log ao 
n0 log £ n 0 log B 

and 

log w —log ao —rio log B 
(2) wo log B 

by these equations (1) and (2) the correction factors in columns 
5 to 8 of Table V I I I are calculated, by using for ao and no the 
values of the lower range curve, in columns 5 and 7, and the 
values of the medium range curve, in columns 6 and 8. 

Thus, for instance, at B=1000 , the loss can be calculated 
by the equation, 

w=aiBni, 

by applying to a x the correction factor: 

—15.7 per cent a t constant : n x =2 .11 , tha t is, 
oi =0.00341(1 -0 .157) =0.00287; 

or by applying to ni the correction factor: 

1.14 per cent a t constant : a i =0.00341, tha t is, 
« 1 = 2 . 1 1 ( 1 -0 .0114) =2.086. 

Or the loss can be calculated by the equation, 

w = a2Bni, 

by applying to a 2 the correction factor: 

—11.1 per cent a t constant : n 2 = 1.60, t ha t is, 
a 2 = 0 . 1 0 9 6 ( l -0 .111) =0 .0974; 
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or by applying to n 2 the correction factor: 

—1.06 per cent a t constant : a 2 = 0.1096, tha t is, 
« 2 = 1 . 6 0 ( 1 -0 .0106) =1 .583 , 

and the loss may thus be given by either of the four ex
pressions: 

w = 0 .00287B 2 1 1 = 0 .0034LB 2 0 8 6 = 0.0974B 1- 6 = 0 . 1 0 9 6 B 1 5 8 7 . 

As seen, the variation of the exponent n, required to extend 
the use of the parabolic equation into the range for which i t 
does not strictly apply any more, is much less than the varia
tion of the coefficient a, and a far greater accuracy is thus 
secured by considering the exponent n as constant—1.6 for 
medium and high values of B— and making the correction in 
coefficient a, outside of the range where the 1.6th power law 
holds rigidly. 

I n the last column of Table VI I I is recorded the ratio of 
• • 4 l°g W o , 

variation, m = = j " ] ^g~g> 3 8 * n e averages each of two successive 
values. As seen, m agrees with the exponent n within the 
two ranges, where it is constant, but differs from it outside 
of these ranges. For instance, if B changes from 1600 down
ward, the ratio of variation m increases, while the exponent 
n slightly decreases. 

In Fig. 84 are shown the percentage correction of the 
coefficients ai and a 2 , and also the two exponents TH and n2, 
together with the ratio of variation m. 

The ratio of variation m is very useful in calculating the 
change of loss resulting from a small change of magnetic density, 
as the percentual change of loss w is m times the percentual 
(small) change of density. 

As further example, the reader may reduce to empirical 
equations the series of observations given in Table I X . This 
table gives: 

A. The candle-power L, as function of the power input p, 
of a 40-watt tungsten filament incandescent lamp. 

B. The loss of power by corona (discharge into the air), p, 
in kw., in 1.895 km. of conductor, as function of the voltage 
e (in kv.) between conductor and return conductor, for the 
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T A B L E I X . 

A. L u m i n o s i t y c h a r a c t e r i s t i c o f 4 0 - w a t t t u n g s t e n i n c a n d e s c e n t l a m p . 

L = h o r i z o n t a l c a n d l e p o w e r . 

p = w a t t s i n p u t . 

L P L P L V 1 L P L P 

2 

4 

8 

1 2 

1 6 

1 2 . 2 5 

1 6 . 3 3 

2 1 . 3 5 

2 5 . 6 0 

2 8 9 1 

2 0 

2 4 

2 8 

3 2 

3 6 

3 1 . 6 4 j 
3 4 . 5 5 

3 7 . 2 9 ; 

3 9 . 2 6 

4 1 . 4 7 

4 0 

ii 
4 8 

6 4 

9 6 

4 4 - 1 4 

4 5 4 2 

4 7 . 0 5 

5 4 . 3 1 

6 5 . 7 3 

1 2 8 

1 9 2 

2 5 6 

2 9 1 

3 2 0 

7 6 7 7 

9 5 2 4 

1 0 9 0 

1 1 8 3 

1 2 3 - 1 

3 8 2 

4 6 0 

1 3 5 . 6 

1 4 5 . 2 

B. C o r o n a l o s s o f h i g h - v o l t a g e t r a n s m i s s i o n l i n e ; a t 6 0 c y c l o s : 

1 8 9 5 m . l e n g t h o f c o n d u c t o r . 

3 . 1 0 m . d i s t a n c e b e t w e e n c o n d u c t o r s . 

N o . 0 0 0 s e v e n - s t r a n d c a b l e , 1 . 1 8 c m . d i a m e t e r . 

— 1 3 ° C . ; 7 6 . 2 c m . b a r o m e t e r ; s u n s h i n e . 

e = k i l o v o l t s b e t w e e n c o n d u c t o r s , e f f e c t i v e . 

p = k i l o w a t t s l o s s . 

e P « P e P e P e P 

7 9 . 8 
9 0 . 7 

1 0 1 . 5 
1 0 9 .S 
1 2 0 . 5 
1 3 0 . 0 

0 - 0 1 

0 . 0 1 

0 . 0 2 

0 . 0 3 

0 . 0 4 

0 . 0 6 

1 4 1 . 5 
1 4 7 . 0 
1 5 3 . 6 
1 5 9 . 0 
1 6 9 . 8 
1 7 4 . 0 

0 . 0 9 

0 . 0 8 

0 . 1 2 

0 . 1 6 

0 . 3 5 

0 . 5 3 

1 8 1 . 0 

1 8 6 . 2 

1 9 2 . 6 

2 0 0 . 6 

2 0 8 . 6 

2 1 6 - 0 

1 . 0 2 

1 . 5 5 

2 . 4 9 

3 . 7 7 

5 . 3 4 

7 . 1 3 

2 2 1 . 0 

2 2 7 . 0 

2 3 4 . 0 

1 8 9 . 0 

1 9 5 . 0 

2 0 3 8 

8 7 0 

1 0 . 6 6 

1 3 2 5 

2 . 1 0 

2 . 8 8 

4 . 7 2 

2 1 2 . 0 

2 1 9 . 0 

6 . 4 4 

8 . 3 1 

C . V o l u m e - p r e s s u r e c h a r a c t e r i s t i c o f d r y s t e a m a t i t s b o i l i n g - p o i n t . 

t = d e g r e e s C. 

P = p r e s s u r e , i n k g . p e r c m . 2 

V = v o l u m e , i n m . 3 p e r k g . 

t P V t P y t P y i 
5 9 . 8 

8 0 . 9 

9 9 . 1 

1 1 9 . 6 

0 . 2 

0 . 5 

1 . 0 

2 . 0 

7 8 0 6 

3 2 9 7 

1 . 7 1 7 

0 . 8 9 6 

1 3 2 8 

1 4 2 8 

1 5 1 . 0 

1 5 7 . 9 

3 . 0 

4 . 0 

5 . 0 

6 . 0 

0 . 6 1 2 

0 . 4 6 7 

0 . 3 7 9 

0 . 3 1 9 

1 6 9 5 

1 7 8 9 

1 8 6 9 

1 9 7 . 2 

8 . 0 

1 0 0 

1 2 . 0 

1 5 . 0 

0 . 2 4 4 i 

0 . 1 9 7 il 
0 . 1 6 7 |! 

0 . 1 3 5 S 
II 



EMPIRICAL CURVES. 255 

distance of 310 cm. between the conductors, and the conductor 
diameter of 1.18 cm. 

C. The relation between steam pressure P, in kg. per cm. 2 , 
and the steam volume V, in m. 3 , a t the boiling-point, per kg. 
of dry steam. 

D. Periodic Curves. 

158. All periodic functions of t ime or distance can be ex
pressed by a trigonometric series, or Fourier series, as has been 
discussed in Chapter I I I , and the methods of resolution, and 
the arrangements to carry out the work rapidly, have also 
been discussed in Chapter I I I . 

The resolution of a periodic function thus consists in the 
determination of the higher harmonics, which are superimposed 
on the fundamental wave. 

As periodic functions are of the greatest importance in elec
trical engineering, in the theory of al ternating current pheno
mena, a familiarity with the wave shapes produced by the dif
ferent harmonics is desirable. This familiarity should be 
sufficient to enable one in most cases to judge immediately from 
the shape of the wave, as given by oscillograph, etc., on the har
monics which are present or at least which predominate. 

The effect of the lower harmonics, such as the third, fifth, 
etc., (or the second, fourth, etc., where present) , is to change 
the shape of the wave, make it differ from sine shape, giving 
such features as flat top wave, peaked wave, saw-tooth, double 
and triple peaked, steep zero, flat zero, etc., while the high 
harmonics do not change the shape of the wave so much, as 
superimpose ripples on it. 

O D D L O W E R H A R M O N I C S . 

159. To elucidate the variation in shape of the al ternat ing 
waves caused by various lower harmonics, superimposed upon 
the fundamental a t different relative positions, t ha t is, different 
phase angles, in Figs. 85 and 86 are shown the effect of a third 
harmonic, of 10 per cent and 30 per cent of the fundamental, 
respectively. A gives the fundamental, and C D E F G the 
waves resulting by the superposition of the triple harmonic 
in phase with the fundamental (C), under 45 deg. lead (D), 90 
deg. lead or quadra ture (E), 135 deg. lead (F) and opposition 
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(G). (The phase differences here are referred to the maximum 
of the fundamenta l : with waves of different frequencies, the 
phase differences na tura l ly change from point to point, and in 
speaking of phase difference, the reference point on the wave 

t 
F I G . 8 5 . Effect of Small Third Harmonic. 

must thus be given. For instance, in C the third harmonic is 
in phase with the fundamental a t the max imum point of the 
lat ter , but in opposition a t i ts zero point.) 

The equations of these waves a re : 

A: i / = 1 0 0 cos ß 
C: 1 /=100 cos ß+10 cos 3ß 
E: y=100 cos ß+10 cos (3/?+ 90 deg.) 
G: y =100 cos ß+10 cos (3^ + 180 deg.) 

= 1 0 0 0 0 8 / 9 - 1 0 cos 3/? 
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C: y = 100 cos ß + 30 cos 3ß 
D: y=100 cos /9+30 cos (3¿3+45 deg.) 
E: y =100 cos ß + 30 cos (3/?+ 90 deg.) 
F: y =100 cos /3+30 cos (3/?+ 135 deg.) 
G: ?/=100 cos ß + 30 cos (3/Î+180 deg.) 

= 100 cos / ? - 3 0 cos 3/3 

F I G . 86. Effect of Large Third Harmonic. 

In all these waves, one cycle of the triple harmonic is given in 
dot ted lines, to indicate its relative position and intensity, and 
the maxima of the harmonics are indicated by the arrows. 
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F I G . 87. Flat Zero and Reversal by Third Harmonic. 

The la t ter are shown in D, E, F; the former have the same shape 
bu t reversed, t ha t is, rising and decreasing side of the wave 
interchanged, and therefore are not shown. 

The triple harmonic in phase with the fundamental , C, gives 
a peaked wave with fiat zero, and the peak and the flat zero 

As seen, with the harmonic in phase or in opposition (C and 
G), t h e waves are symmetrical ; with the harmonic out of phase, 
the waves are unsymmetrical , of the so-called " s aw t o o t h " 
type, and the saw tooth is on the rising side of the wave with a 
lagging, on the decreasing side with a leading triple harmonic. 
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become the more pronounced, the higher the third harmonic, 
until finally the flat zero becomes a double reversal of volt
age, as shown in Fig. 87d. 

Fig. 87 shows the effect of a gradual increase of an in-phase 
triple harmonic: a is the fundamental , b contains a 10 per 

F I G . 8 8 . Effect of Small Fifth Harmonic. 

cent, c a 38.5 per cent and d a 50 per cent triple harmonic, as 
given by the equat ions: 

a<. y =100 cos ß 
b: y =100 cos ß+10 cos 3ß 
c: y =100 cos ß+38.5 cos 3ß 
d: y = 100 cos £ + 5 0 cos 3ß 
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At c, t h e wave is entirely horizontal a t the zero, t ha t is, remains 
zero for an appreciable t ime a t the reversal. I n this figure, t h e 
three harmonics are shown separately in dot ted lines, in their 
relat ive intensities. 

A triple harmonic in opposition to the fundamental (Figs. 
85 and 86(7) is characterized by a flat t op and steep zero, and 

Fia. 89. Effect of Large Fifth Harmonic. 

with the increase of the thi rd harmonic, the flat t op develops 
into a double peak (Fig. 86(7), while steepness a t the point of 
reversal increases. 

The simple saw tooth, produced by a triple harmonic in 
quadra tu re with the fundamental is shown in Fig. 852?. Wi th 
increasing triple harmonic, t he h u m p of the saw tooth becomes 
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more pronounced and changes to a second and lower peak, as 
shown in Fig. 86. This figure gives the variation of the saw
tooth shape from 45 to 45 deg. phase difference : With the phase 
of the third harmonic shifting from in-phase to 45 deg. lead, the 
flat zero, by moving up on the wave, has formed a h u m p or saw 
tooth low down on the decreasing (and with 45 deg. lag on the 
increasing) side of the wave. At 90 deg. lead, the saw tooth has 
moved up to the middle of the down branch of the wave, and 
with 135 deg. lead, has moved still further up, forming practi
cally a second, lower peak. Wi th 180 deg. lead—or opposition 
of phase—the h u m p of the saw tooth has moved up to the 
top, and formed the second peak—or the flat top, with a lower 
third harmonic, as in Fig. 85G. 

Figs. 88 and 89 give the effect of the fifth harmonic, super
imposed on the fundamental, of 5 per cent in Fig. 88, and of 20 
per cent in Fig. 89. Again A gives the fundamental sine wave, 
C the effect of the fifth harmonic in opposition with the funda
mental, E in quadra ture (lagging) and G in phase. One cycle 
of the fifth harmonic is shown in dot ted lines, and the maxima 
of the harmonics indicated by the arrows. 

The equations of these waves are given b y : 

A: y =100 cos ß 
C: y = 100 cos ¿5 -5 cos 5ß 
E: y = 100 cos ß-5 cos (5,3 + 90 deg.) 
G: y = 100 cos ß + 5 cos 5ß 

A: y = 100 cos ß 
C: y = 100 cos ß-20 cos bß 
E: y = 100 cos / 3 - 2 0 cos (5/3 + 90 deg.) 
G: y =100 cos/9 + 20 cos 5,3 

In the distortion caused by the fifth harmonic (in opposi
tion to the fundamental) flat t op (Fig. 88C) or double peak (at 
higher values of the harmonic, Fig. 89C), is accompanied by flat 
zero (or, at very high values of the fifth harmonic, double rever
sal at the zero, similar as in Fig. 87d), while in the distortion 
by the third harmonic it is accompanied by sharp zero. 

With the fifth harmonic in phase with the fundamental, a 
peaked wave results with s teep zero, Fig. 88G, and the transi-



262 ENGINEERING MATHEMATICS 

t ion from the steep zero to the peak, with larger values of the 
fifth harmonic, then develops in to two additional peaks, t hus 
giving a treble peaked wave, Fig. 88(7, with s teep zero. The 
beginning of treble peakedness is noticeable already in Fig. 
88(7, with only 5 per cent of fifth harmonic. 

F I G . 9 0 . Third and Fifth Harmonic. 

With the seventh harmonic, the treble-peaked wave would 
be accompanied by flat zero, and a quadruple-peaked wave 
would give steep zero (Fig. 95). 

The fifth harmonic out of phase with the fundamental again 
gives saw-tooth waves, Figs. 88 and 892?, but the saw tooth 
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produced by the fifth harmonic contains two humps, t ha t is, 
is double, with one h u m p low down, and the other high up on 
the curve, thereby giving the transition from the symmetrical 
double peak C to the symmetrical treble peak G. 

FIG. 91. Third and Fifth Harmonic. 

160. Characteristic of the effect of the third harmonic 
thus is : 

Coincidence of peak with flat zero or double reversal, of steep 
zero with flat top or double peak, and single h u m p or saw tooth, 
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While characteristic of the effect of the fifth harmonic is : 
Coincidence of peak with s teep zero, or treble peak, of fiat 

top or double peak with flat zero or double reversal, and double 
saw-tooth. 

t 10* Third Harmonic & 
5 $ Fifth Harmonic 

t t \ V / A 

F I G . 92. Third and Fifth Harmonic. 

By thus combining third and fifth harmonics of proper 
values, they can be made to neutralize each other 's effect in any 
one of their characteristics, bu t then accentuate each other in 
the other characteristic. 

Thus peak and flat zero of the triple harmonic combined with 
peak and s teep zero of the fifth harmonic, gives a peaked wave 
with normal sinusoidal appearance a t t he zero value; combin-



EMPIRICAL CURVES. 265 

ing the flat tops or double peaks of both harmonics, the flat 
zero of the one neutralizes the steep zero of the other, and we 
get a flat top or double peak with normal zero. Or by com
bining the peak of the third harmonic with the flat top of the 
fifth we get a wave with normal top, but steep zero, and we get a 
wave with normal top, but flat zero or double reversal, by com
bining the triple harmonic peak with the fifth harmonic flat top. 

Thus any of the characteristics can be produced separately 
by the combination of the third and fifth harmonic . 

By combining third and fifth harmonics out of phase with 
fundamental—such as give single or double saw-tooth shapes, the 
various other saw-tooth shapes are produced, and still further 
saw-tooth shapes, by combining a symmetrical (in phase or in 
opposition) third harmonic with an out of phase fifth, or 
inversely. 

These shapes produced by the superposition, under different 
phase angles, of fifth and third harmonics on the fundamental, 
and their gradual change into each other by the shifting in 
phase of one of the harmonics, are shown in Figs. 90, 91 and 92 
for a third harmonic of 10 per cent, and a fifth harmonic of 5 
per cent of the fundamental. 

In Fig. 90 the third harmonic is in phase, in Fig. 91 in quadra
ture lagging, and in Fig. 92 in opposition with the fundamental. 
A gives the fundamental, B the fundamental with the third har
monic only, and C, D, E, F, the waves resulting from the super
position of the fifth harmonic on the combination of funda
mental and third harmonic, given as B. In C the fifth harmonic 
is in opposition, in D in quadrature lagging, in E in phase, and 
in F in quadrature leading. 

We see here round tops with flat zero (Fig. 90C), nearly 
triangular waves (Fig. 902?), approximate half circles (Fig. 
922?), sine waves with a dent at the top (Fig. 92C), and vari
ous different forms of saw tooth. 

The equations of these waves are : 

A: y =100 cos/3 
B: y =100 cos ß+10 cos 3/3 
C: y =100 cos ß+10 cos 3 /3 -5 cos 5ß 
D: y =100 cos £ + 1 0 cos 3 /3 -5 cos (5/3+90 deg.) 
E: y =100 cos /3 + 10 cos 3/3 + 5 cos 5/3 
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A: y = 100 cos ß 
B: y =100 cos ß-10 cos (3/3 + 90 deg.) 
C: y =100 cos / 3 - 1 0 cos (3/3 + 90 d e g . ) - 5 cos 5/3 
ö : ?/=100 cos / 9 - 1 0 cos (3/3 + 90 d e g . ) - 5 cos (5/3 + 90 deg.) 
E: y =100 cos / 3 - 1 0 cos (3/3 + 90 d e g . ) + 5 cos 5/3 
Í 1 : i /=100 cos / 9 - 1 0 cos (3/3 + 90 d e g . ) + 5 cos (5/3 + 90 deg.) 

A: y =100 cos/? 
ß : t /=100 cos / 3 - 1 0 cos 3/3 
C: î /=100 cos / 3 - 1 0 cos 3 / 3 -5 cos 5/3 
D : y =100 cos / 3 - 1 0 cos 3 /9 -5 cos (5/3 + 90 deg.) 
2?; j / = 1 0 0 cos / 3 - 1 0 cos 3/9 + 5 cos 5/3 

E V E N HARMONICS. 

I 6 I . Characteristic of the wave-shape distortion of even har
monics is tha t the wave is not a symmetrical wave, but the 
two half waves have different shapes, and the characteristics 
of the negative half wave are opposite to those of the positive. 
This is to be expected, as an even harmonic, which is in phase 
with the positive half wave of the fundamental , is in opposition 
with the negative; when leading in the positive, it is lagging 
in the negative, and inversely. 

Fig. 93 shows the effect of a second harmonic of 30 per cent 
of the fundamental A, superimposed in quadra ture , 60 deg. 
phase displacement, 30 deg. displacement and in phase, in 
B, C, D and E respectively. 

The equations of these waves are : 

A: y = 100 cos /9and y' = 30 cos (2/9-90) 
B: y = 100 cos ,9 + 30 cos (2.3-90) 
C: y = 100 cos ß + 30 cos (2/9-60) 
D: y = 100 cos ß + 30 cos (2.9-30) 
E: y = 100 cos ,9 + 30 cos 2,.9 

Quadra ture combination (Fig. 935) gives a wave where the 
rising side is flat, the decreasing side steep, and inversely with 
the other half wave. C and D give a peaked wave for the one, a 
saw tooth for the other half wave, and E, coincidence of phase 
of fundamental and second harmonic, gives a combination of 
one peaked half wave with one flat-top or double-peaked wave. 
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Characteristic of C, D and E is, t ha t the two half waves are 
of unequal length. 

In general, even harmonics, if of appreciable value are easily 
recognized by the difference in shape, of the two half waves. 

t 
FIG. 93. Effect of Second Harmonic. 

By the combination of the second harmonic with the third 
harmonic (or the fifth), some of the features can be intensified, 
others suppressed. 

An illustration hereof is shown in Fig. 94 in the production 
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of a wave, in which the one half wave is a short high peak, the 
other a long flat top, by the superposition of a second harmonic 
of 46.5 per cent, and a thi rd harmonic of 10 per cent both in 
phase with the fundamental . 

A gives the fundamental sine wave, B and C the second and 
third harmonic, D t h e combination of fundamental and second 

F I G . 94. Peak and Flat Top by Second and Third Harmonic. 

harmonic , giving a double peaked negative half wave, and E the 
addi t ion of the thi rd harmonic to the wave D. Thereby the 
double peak of the negative half wave is flatted to a long fiat 
top, and the peak of the positive half wave intensified and 
shortened, so t h a t the positive max imum is about two and one 



EMPIRICAL CURVES. 269 

half times the negative maximum, and the negative half wave 
nearly 75 per cent longer than the positive half wave. 

The equations of these waves are given by: 

A: y =100 cos ,3 
B: y =46.5 cos 23 

C: y =10 cos Zß 
D: y =100 cos ,3 + 46.5 cos 2.9 
E: y =100 cos ,3 + 46.5 cos 2,3 + 10 cos 3,3 

HIGH HARMONICS. 

1 6 2 . Comparing the effect of the fifth harmonic. Figs. SS and 

89. with that of the third harmonic, Figs. 85 and 86. it is seen 

F I G . 95. Puffert of Seventh Harmonic. 

that a fifth harmonic, even if very small, is far easier distin
guished, that is, merges less into the fundamental than the third 
harmonic. .Still more this is the case with the seventh har
monic, as shown in Fig. 95 in phase and in opposition, of 10 per 
cent intensity. This is to be expected: sine waves which do not 
differ very much in frequency, such as the fundamental and 
the second or third harmonic, merge into each other and form a 
resultant shape, a distorted wave of characteristic appearance, 
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while sine waves of very different frequencies, as the fundamen
tal and its eleventh harmonic, in Fig. 96, when superimposed, 
remain distinct, from each other; the general shape of the wave 
is the fundamental sine, and the high harmonics appear as rip
ples upon the fundamental, thus giving what may be called a 
corrugated sine wave. By counting the number of ripples per 

F I G . 96- Wave in which Eleventh Harmonic Predominates. 

complete wave, or per half wave, the order of the harmonic 

can then rapidly be determined. For instance, the wave shown 
in Fig. 96 contains mainly the eleventh harmonic, as there are 

eleven ripples per wave. The wave shown by the oscillogram 

Fig. 97 shows the twenty-third harmonie, etc. 

Fia. 97. C D 23510. Alternator Wave with Single High Harmonic. 

Very frequently high harmonics appear in pairs of nearly the 

same frequency and intensity, as an eleventh and a thirteenth 

harmonic, etc. In this case, the ripples in the wave shape show-

maxima, where the two harmonics coincide, and nodes, where 

the two harmonies are in opposition. The presence of nodes 

makes the counting of the number of ripples per complete wave 

more difficult. A convenient, method of procedure in th i s case 
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is, to measure the distance or space between, the maxima of one 

or a few ripples in the range where they are pronounced, and 

count the number of nodes per - cycle. For instance, in the 
wave, Fig. 98, the space of two ripples is about 60 deg., and two 

nodes exist per complete wave. 60 deg. for two ripples, give 

F i g . 9 8 . Wave in which Eleventh and Thirteenth Harmonics Predominate. 

2X-jjj^ = 12 ripples per complete wave, as the average frequency 

of the two existing-harmonics, and since these .harmonics differ 

by 2 (since there are two nodes), their order is the eleventh and 

the thirteenth harmonics. 

163. This method of determining two similar harmonics, with 

F i g . 99. C D 28512. Alternator Wave with. Two Very unequal High 
Harmonics. 

a little practice, becomes very convenient and useful, and may 

frequently be used visually also, in determining the frequency 
of bunting of synchronous machines, etc. In the phenomenon 

of hunting, frequently two periods are superimposed, a forced 

frequency, resulting from speed of generator, etc., and the 

natural frequency of the machine. Counting the number of 

impulses, / , per minute, and the number of nodes, », gives the 
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two frequencies: / + - and/—-; and as one of these frequencies 

is the impressed engine frequency, this affords a check. 

Where the two high harmonics of nearly equal order, as the 

eleventh and the thirteenth in Fig. 98, are approximately equal 

in intensity, at the nodes the ripples practically disappear, 

and between the nodes the ripples give a frequency intermediate 

between the two components: Apparently the twelfth harmonic 

in Fig. 98. In this case the two constituents are easily deter

mined: 1 2 - 1 =11, and 12 + 1 =13. 

Where of the two constituents one is greater than the other 

the wave still shows nodes, but the ripples do not entirely disap, 

pear at the nodes, but merely decrease, that is, the wave show-

a sine writh ripples which increase and decrease along the waves 

R a , 100, C D 23511. Alternator Wave with. Two Nearly Equal High 
Harmonics, 

as shown by the oscillograms 99 and KM). In this case, one of 

the two high frequencies is given by counting the total number 

of ripples, but it may at first be in doubt, whether the other 

component is higher or lower by the number of nodes. The 

decision then is made by considering the length of the ripple at 

the node : If the length is a maximum at the node, the secondary 

harmonic is of higher frequency than the predominating one; 

if the length of the ripple at the node is a minimum, the; second

ary frequency is lower than the predominating one. This is 

illustrated in Fig. 101. In this figuro, A and B represent the 

tenth and twelfth harmonic of a wave, respectively: C gives 

their superposition with the lower harmonic A predominating, 

while B is only of half the intensity of A. D gives the superposi

tion of A and B at equal intensity, and E gives the super

position with the higher frequency B predominating. That is, 

the respective equations would be: 
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A: j / = c o s 10/5 
B: Î / = C O S 12/5 

C: t /=cos 10/3+0.5 cos 12/9 
Z>: t /=cos 10/9 +cos 12/3 

t /=0 .5 cos 10/9 + cos 12/9 

As seen, in C the half wave at the node is abnormally long, 
showing the preponderance of the lower frequency, in E abnor-

Superposition of High Harmonics 

F I G . 101. Superposition of Two High Harmonics of Various Intensities. 

mally short, showing the preponderance of the higher frequency. 
In alternating-current and voltage waves, the appearance of 

two successive high harmonics is quite frequent. For instance, 
if an al ternat ing current generator contains n slots per pole, 
this produces in the voltage wave the two harmonics of orders 
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2n — l and 2w + l . Such is the origin of the harmonics in the 
oscillograms Figs. 99 and 100. 

The na ture of the increase and decrease of the ripples and the 
formation of the nodes by the superposition of two adjacent 
high harmonics is best seen by combining their expressions trig-
onometrically. 

Thus the harmonics: 

yl =cos (2n — l)ß 
and y2 =cos (2n + l)ß 

combined give the resul tant : 

y = 2 / i + 2/2 
=cos ( 2 n - l ) / ? + cos (2n + l)ß 
= 2 cos ß cos 2nß 

t ha t is, give a wave of frequency 2n t imes the fundamental : 
cos 2nß, but which is not constant, bu t varies in intensity 
by the factor 2 cos ß. 

Not infrequently wave-shape distortions are met, which are 
not due to higher harmonics of the fundamental wave, but are 
incommensurable therewith. In this case there are two entirely 
unrelated frequencies. This, for instance, occurs in the second
ary circuit of the single-phase induction motor ; two sets of 
currents, of the frequencies/ , and (2 /—/) exist ( w h e r e / i s the 
primary frequency a n d / , the frequency of slip). Of this na ture , 
frequently, is the distortion produced by surges, oscillations, 
arcing grounds, etc., in electric circuits; it is a combination of 
the natural frequency of the circuit with the impressed fre
quency. Telephonic currents commonly show such multiple 
frequencies, which are not harmonics of each other. 



CHAPTER VII . 

NUMERICAL CALCULATIONS. 

164. Engineering work leads to more or less extensive 
numerical calculations, when applying the general theoretical 
investigation to the specific cases which are under considera
tion. Of importance in such engineering calculations are : 

(a) The method of calculation. 
(ò) The degree of exactness required in the calculation. 
(c) The intelligibility of the results. 
(d) The reliability of the calculation. 

a. Method of Calculation. 

Before beginning a more extensive calculation, it is desirable 
carefully to scrutinize and to investigate the method, to find 
the simplest way, since frequently by a suitable method and 
system of calculation the work can be reduced to a small frac
tion of what it would otherwise be, and what appear to be 
hopelessly complex calculations may thus be carried out 
quickly and expeditiously by a proper arrangement of the 
work. Indeed, the most important part of engineering work—and 
also of other scientific work—is the determination of the metho.l 
of at tacking the problem, whatever i t may be, whether a : i 
experimental investigation, or a theoretical calculation. I t is 
very rarely tha t important problems can be solved by a direct 
attack, by brutally forcing a solution, and then only by wasting 
a large amount of work unnecessarily. I t is by the choice of 
a suitable method of at tack, that intricate problems are reduced 
to simple phenomena, and then easily solved; frequently in 
such cases requiring no solution at all, but being obvious w hen 
looked at from the proper viewpoint. 

Before attacking a more complicated problem experimentally 
or theoretically, considerable time and study should thus first be 
devoted to the determination of a suitable method of at tack. 

275 
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The next then, in cases where considerable numerical calcu
lations are required, is the method of calculation. The most 
convenient one usually is the arrangement in tabular form. 

As example, consider the problem of calculating the regula
tion of a 60,000-volt transmission line, of r = 60 ohms resist
ance, x = 135 ohms inductive reactance, and b=0.0012 conden
sive susceptance, for various values of non-inductive, inductive, 
and condensive load. 

Start ing with the complete equations of the long-distance 
transmission line, as given in " Theory and Calculation of 
Transient Electric Phenomena and Oscillations," Section I I I , 
paragraph 9, and considering tha t for every one of the various 
power-factors, lag, and lead, a sufficient number of values 
have t o be calculated to give a curve, the amount of work 
appears hopelessly large. 

However, without loss of engineering exactness, the equa
tion of the transmission line can be simplified by approxima
tion, as discussed in Chapter V, paragraph 123, to the form, 

where E0, I0 are voltage and current, respectively a t the step-
down end, Ei, h a t the step-up end of the line; and 

Z=r - r - / x = 60 + 135/ is the tota l line impedance; 

Y = g + jb = +0 .0012/ is the to ta l shunted line admit tance. 

Herefrom follow the numerical values : 

(1) 

(60+135/X+0.0012/) 
2 
= 1 + 0 . 0 3 6 / - 0.081 = 0.919 + 0.036/; 

1 + 4 : — 1 + 0 . 0 1 2 / - 0.027 - 0.973 + 0.012/; 
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ZY 

6 J 

•• (60 + 135/V0.973+0.012/Ì 

= 58 .4+ ) .72 j+i31 .1 j -1 .62 = 56.8+131.8j ; 

7Y\ 
1 + - 5 - 1 = (+0.0012j)(0.973 +0.012¿) 

= +0.001168j'-0.0000144 = (-0.0144 + 1.l()8j)10- 3 

hence, substi tuting in (1), the following equations may be 
written : 

Ei = (0.919 ' 0M6j)Eo + (56.8 +131.8j")/ 0 = A +¿3; Ì 
' / , = (0.919+0.036/)/o - (0.0144 -1 .168 / ) t f 0 10- 3 = C-D.f U ' 

165- Now the work of calculating a series of numerical 
values is continued in tabular form, as follows: 

1. 100 PER CENT POWER-FACTOR. 

i ? o = 6 0 k v . a t s t e p - d o w n e n d o f l i n e . 

i = ( 0 . 9 1 9 + 0 . 0 3 6 / ) & = 5 5 . 1 + 2 . 2 / k v . 

D = ( 0 . 0 1 4 4 - 1 . 1 6 8 / ) ß i 1 0 - » = 0 . 9 - 7 0 . 1 ) a m p . 

/q amp. B k v . 
E i = e.+Ì«2 

= A + B. f i * + M,= e ! . e 
ei 
— = tan e. A'-

0 0 5 5 . 1 + 2 . 2 / 3 0 3 8 + 5 = 3 0 4 1 5 5 . 1 + 0 . 0 4 0 + 2.3 
2 0 1 . 1 + 2 . 6 / 5 6 . 2 + 4 8 ; 3 1 5 8 + 2 3 = 3 1 8 1 5 6 . 4 + 0 . 0 8 5 + 4.9 
4 0 2 . 3 + 5 . 3 / 5 7 . 4 + 9 . 5 ) 3 2 9 5 + 5 6 = 3 3 5 1 5 7 . 9 + 0 . 1 3 1 + 7.5 
8 0 3 . 4 + 7 . 9 / 5 8 . 5 + 1 0 . 1 ) 3 4 2 2 + 1 0 2 = 3 5 2 4 5 9 . 4 + 0 . 1 7 3 + 9.9 
8 0 4 . 5 + 1 0 . 5 ) 5 9 . 6 + 1 2 . 7 ) 3 5 5 2 + 1 6 1 = 3 7 1 3 6 0 . 9 + 0 . 2 1 3 +12.0 

1 0 0 5 . 7 + 1 3 . 2 / 6 0 . 8 + 1 5 . 4 / 3 6 9 7 + 2 3 7 = 3 9 3 4 6 2 . 7 + 0 . 2 5 3 + 1 4 . 2 

1 2 0 6 . 8 + 1 5 . 8 ) 6 1 . 9 + 1 8 . 0 ) 3 8 3 2 + 3 2 4 = 4 1 5 6 6 4 . 5 + 0 . 2 9 1 + 1 6 . 3 

h 
a m p . 

C a m p . 
l ! = t l + ) t l 

= C - D 
i ' i* + i a 2 = i * i I — = t a r n 

i i Ai 
Ai-

1 A'= 
Ae>1 

P o w e r -

f a c t o r 

0 0 - 0 . 7 - 9 0 . 1 ) 4 9 1 4 + 1 = 4 9 1 5 7 0 . 1 - 7 8 - 8 9 . 1 + 8 8 . 6 0 . 0 2 4 

= + 9 0 . 9 

2 0 1 8 . 4 + 0 . 7 ) 1 7 . 5 + 7 0 . 8 / 5 0 1 3 + 3 0 6 = 5 3 1 9 7 2 . 9 + 4 . 0 4 + 7 « . 3 + 7 1 . 4 0 . 8 3 2 

4 0 3 6 . 8 + 1 . 4 ) 3 5 . 9 + 7 1 . 5 / 5 1 1 2 + 1 2 8 9 = 6 4 0 1 8 0 . 0 + 1 . 9 9 + 8 3 . 4 + 5 5 . 9 0 5 5 8 

6 0 5 5 . 1 + 2 . 2 ) 5 4 . 2 + 7 2 . 3 ) 5 2 2 7 + 2 9 3 8 = 8 1 6 5 9 0 . 4 + 1 . 3 3 + 5 8 . 1 + 4 3 . 2 0 . 7 2 8 

8 0 7 3 . 5 + 2 . 9 / 7 2 . 8 + 7 8 . 0 / 5 3 2 9 + 5 2 7 1 = 1 0 8 0 0 1 0 3 . 0 + 1 . 0 5 5 + 4 5 . 2 + 3 3 . 2 0 8 3 7 

1 0 0 9 1 . 9 + 8 . 6 ] 9 1 . 0 + 7 3 . 9 ) 8 2 8 1 + 6 4 3 2 = 1 3 7 1 3 1 1 7 . 1 + 0 8 1 1 4 8 9 . 1 + 2 4 . 9 0 . 9 0 7 

1 3 0 1 1 0 . 8 + 4 » ) 1 0 9 . 4 + 7 4 . 4 / 1 1 9 6 9 + 5 5 3 5 = 1 7 5 0 4 1 3 2 3 + 0 6 8 0 J 3 4 . 1 + 1 7 . 8 0 . 9 5 2 

l e a d 



278 ENGINEERING MATHEMATICS. 

e i = 6 0 k v . a t a t e p - u p e n d o f l i n e . 

h 
a m p . 

R e d . F a c t o r , 

e 
6 0 

to 

a m p . 

eo 

k v . 

ii 
a m p . 

P o w e r - F a c t o r . 

0 0 . 9 1 8 0 6 5 . 5 7 6 . 4 0 . 0 2 4 

2 0 0 . 9 4 0 2 1 . 3 6 3 . 8 7 7 . 5 0 . 3 3 2 

4 0 0 . 9 6 5 4 1 . 4 6 2 . 1 8 2 . 9 0 . 5 5 8 

6 0 0 . 9 9 0 6 0 . 6 6 0 . 6 9 1 . 4 0 . 7 2 8 

8 0 1 . 0 1 5 7 8 . 8 5 9 . 1 1 0 1 . 5 0 . 8 3 7 

1 0 0 1 . 0 4 5 9 5 . 7 5 7 . 5 1 1 2 . 3 0 . 9 0 7 

1 2 0 1 . 0 7 5 1 1 1 . 7 5 5 . 8 1 2 2 . 8 0 . 9 5 2 

l e a d 

C u r v e a o f i0. e 0 . i v c o s S, p l o t t e d i n F i g . 8 6 . 

2. 90 P E K CENT POWER-FACTOR, LAG. 

cos 0 = 0.9; sin 0 = V l - O . 9 2 = O . 4 3 6 ; 

7 0 = t'o(cos 6 - / sin 0) = i 0 (0 .9 -0.436}") ; 

Ei = (0.919+ 0.036j>o + (56.8 + 131.8/) (0.9 -0 .436/> ' o 

= (0.919+ 0.036/)e 0 + (108.5+93.8j")i 0 = A +B'; 

li = (0.919+ 0.036/) (0.9 - 0 . 4 3 6 j > ' 0 - (0.0144 - 1 . 1 6 8 j > u l 0 - 3 

= (0.843 - 0.366j>'o- (0.0144 - 1 . 1 6 8 / ) e 0 1 0 - 3 = C'-D, 

and now the table is calculated in the same manner as under 1. 
Then corresponding tables are calculated, in the same 

manner, for power-factor, = 0 . 8 and =0 .7 , respectively, lag, 
and for power-factor =0.9 , 0.8, 0.7, lead: that is, for 

cos 0 + / s i n 0 = 0 . 8 - 0 . 6 / : 
0 . 7 - 0 . 7 Í 4 / ; 
0 .9+0.436/ ; 
0 .8+0 .6 / ; 
0 .7+0.714/ . 

Then curves are plotted for all seven values of power-factor, 
from 0.7 lag to 0.7 lead. 

From these curves, for a number of values of io, for instance, 
¿o=20, 40, 60, 80, 100, numerical values of ix, e0, cos 0, are 
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taken, and plotted as curves, which, for the same voltage 
ei=60 at the step-up end, give i\, e0, and cos 0, for the same 
value io, t ha t is, give the regulation of the line at constant 
current output for varying power-factor. 

b. Accuracy of Calculation. 

166. Not all engineering calculations require the same 
degree of accuracy. When calculating the efficiency of a large 
alternator it may be of importance to determine whether it is 
97.7 or 97.8 per cent, t ha t is, an accuracy within one-tenth 
per cent may be required; in other cases, as for instance, 
when estimating the voltage which may be produced in an 
electric circuit by a line disturbance, it may be sufficient to 

0 . 6 0 

0 . 4 0 

0 . 2 0 

J J 0 0 

F I G . 102. Transmission Line Characteristics. 

determine whether this voltage would be limited to double 
the normal circuit voltage, or whether it might be 5 or 10 
times the normal voltage. 

In general, according to the degree of accuracy, engineering 
calculations may be roughly divided into three classes : 
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(a) Est imat ion of the magnitude of an effect; t ha t is, 
determining approximate numerical values within 25, 50, or 
100 per cent. Very frequently such very rough approximation 
is sufficient, and is all t ha t can be expected or calculated. 
For instance, when investigating the short-circuit current of an 
electric generating system, i t is of importance to know whether 
this current is 3 or 4 times normal current, or whether it is 
40 to 50 times normal current, but it is immaterial whether 
it is 45 to 46 or 50 times normal. I n studying lightning 
phenomena, and, in general, abnormal voltages in electric 
systems, calculating the discharge capacity of lightning arres
ters, etc., the magnitude of the quanti ty is often sufficient. In 
calculating the critical speed of turbine alternators, or the 
na tura l period of oscillation of synchronous machines, the 
same applies, since it is of importance only to see tha t these 
speeds are sufficiently remote from the normal operating speed 
to give no trouble in operation. 

( 6 ) Approximate calculation, requiring an accuracy of one 
or a few per cent only; a large part of engineering calcu
lations fall in this class, especially calculations in the realm of 
design. Although, frequently, a higher accuracy could be 
reached in the calculation proper, it would be of no value, 
since the data on which the calculations are based are sus
ceptible to variations beyond control, due to variation in the 
material , in the mechanical dimensions, etc. 

Thus, for instance, the exciting current of induction motors 
may vary by several per cent, due to variations of the length 
of air gap, so small as to be beyond the limits of constructive 
accuracy, and a calculation exact to a fraction of one per cent, 
while theoretically possible, thus would be practically useless, 
The calculation of the ampere-turns required for the shunt 
field excitation, or for the series field of a direct-current 
generator needs only moderate exactness, as variations in the 
magnetic material , in the speed regulation of the driving 
power, etc. , produce differences amounting to several per 
cent. 

(c) Exact engineering calculations, as, for instance, the 
calculations of the efficiency of apparatus, the regulation of 
transformers, the characteristic curves of induction motors, 
etc. These are determined with an accuracy frequently amount
ing t o one-tenth of one per cent and even greater. 
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Even for meet exact engineering calculat'ons, the accuracy 
of the slide rule is usually sufficient, if intelligently used, lha t 
is, used so as to get the greatest accuracy. For accurate calcu
lations, preferably the glass slide should not be used, but the 
result interpolated by the eye. 

Thereby an accuracy within J per cent can easily be main
tained. 

For most engineering calculations, logarithmic tables are 
sufficient for three decimals, if intelligently used, and as such 
tables can be contained on a single page, their use makes the 
calculation very much more expeditious than tables of more 
decimals. The same applies to trigonometric tables: tables 
of the trigonometric functions (not their logarithms) of three 
decimals I find most convenient for most cases, given from 
degree to degree, and using decimal fractions of the degrees 
(not minutes and seconds).* 

Expedition in engineering calculations thus requires the use 
of tools of no higher accuracy than required in the result, and 
such are the slide rules, and the three decimal logarithmic and 
trigonometric tables. The use of these, however, make it 
neccessary to guard in the calculation against a loss of accuracy. 

Such loss of accuracy occurs in subtracting or dividing two 
terms which are nearly equal, in some logarithmic operations, 
solution of equation, etc,, and in such cases either a higher 
accuracy of calculation must be employed—seven decimal 
logarithmic tables, etc.—or the operation, which lowers the 
accuracy, avoided. The latter can usually be done. For 
instance, in dividing 297 by 283 by the slide rule, the proper 
way is to divide 297-283 = 14 by 283, and add the result 
to 1. 

I t is in the methods of calculation that experience and judg
ment and skill in efficiency of arrangement of numerical calcu
lations is most marked. 

167. AVhile the calculations are unsatisfactory, if not carried 
out with the degree of exactness which is feasible and desirable, 
it is equally wrong to give numerical values with a number of 

* This obviously does not apply to some classes of engineering work, in 
which a much higher accuracy of trigonometric functions is required, as 
trigonometric surveying, etc. 
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ciphers greater than the method or the purpose of the calcula
tion warrants . For instance, if in the design of a direct-current 
generator, the calculated field ampere-turns are given as 9738, 
such a numerical value destroys the confidence in the work of 
the calculator or designer, as it implies an accuracy greater 
than possible, and thereby shows a lack of judgment. 

The number of ciphers in which the result of calculation is 
given should signify the exactness. In this respect two 
systems are in use: 

(a) Numerical values are given with one more decimal 
t han warranted by the probable error of the result; t ha t is, 
the decimal before the last is correct, but the last decimal may 
be wrong by several units. This method is usually employed 
in astronomy, physics, etc. 

(&) Numerical values are given with as many decimals as 
the accuracy of the calculation warrants; tha t is, the last 
decimal is probably correct within half a unit. For instance, 
an efficiency of 86 per cent means an efficiency between 85.5 
and 86.5 per cent; an efficiency of 97.3 per cent means an 
efficiency between 97.25 and 97.35 per cent, etc. This system 
is generally used in engineering calculations. To get accuracy 
of the last decimal of the result, the calculations then must 
be carried out for one more decimal than given in the result. 
For instance, when calculating the efficiency by adding the 
various percentages of lasses, data like the following may be 
given : 

Core loss 2.73 per cent 
i2r 1.06 
Friction 0.93 

Total 4.72 
Efficiency 1 0 0 - 4 . 7 2 = 95.38 
Approximately 95.4 " 

I t is obvious tha t throughout the same calculation the 
same degree of accuracy must be observed. 

I t follows herefrom tha t the values : 

2 i ; 2.5; 2.50; 2.500, 
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while mathematically equal, are not equal in their meaning as 
an engineering result : 

2.5 means between 2.45 and 2.55; 
2.50 means between 2.495 - and 2.505; 
2.500 means between 2.4995 and 2.5005; 

while 2£ gives no clue to the accuracy of the value. 
Thus it is not permissible to add zeros, or drop zeros at 

the end of numerical values, nor is it permissible, for instance, 
to replace fractions as 1/16 by 0.0625, without changing the 
meaning of the numerical value, as regards its accuracy. 
This is not always realized, and especially in the reduction of 
common fractions to decimals an unjustified laxness exists 
which impairs the reliability of the results. For instance, if 
in an arc lamp the arc length, for which the mechanism is 
adjusted, is stated to be 0.8125 inch, such a statement is 
ridiculous, as no arc lamp mechanism can control for one-tenth 
as great an accuracy as implied in this numerical value: the 
value is an unjustified translation from 13/16 inch. 

The principle thus should be adhered to , tha t all calcula
tions are carried out for one decimal more than the exactness 
required or feasible, and in the result the last decimal dropped; 
that is, the result given so tha t the last decimal is probably 
correct within half a unit. 

c. Intelligibility of Engineering Data and Engineering Reports. 

i 6 8 . In engineering calculations the value of the results 
mainly depends on the information derived from them, tha t is, 
on their intelligibility. To make the numerical results and 
their meaning as intelligible as possible, it thus is desirable, 
whenever a series of values are calculated, to carefully arrange 
them in tables and plot them in a curve or in curves. The 
latter is necessary, since for most engineers the plotted curve 
gives a much better conception of the shape and the variation 
of a quanti ty than numerical tables. 

Even where only a single point is required, as the core 
loss at full load, or the excitation of an electric generator at 
rated voltage, it is generally preferable to calculate a few 
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points near the desired value, so as to get at least a short piece 
of curve including the desired point. 

The main advantage, and foremost purpose of curve plott ing 
thus is to show the shape of the function, and thereby give 
a clearer conception of it ; 
but for recording numerical 
values, and deriving numer
ical values from it, the plotted 
curve is inferior to the table, 
due to the limited accuracy 
possible in a plotted curve, 
and the further inaccuracy 
resulting when drawing a 
curve through the plotted cal
culated points. To some 
extent, the numerical values 
as taken from a plotted curve, 
depend on the particular 
kind of curve rule used in F I G . 1 0 3 . Compounding Curve, 
plotting the curve. 

In general, curves are used for two different purposes, and 
on the purpose for which the curve is plotted, should depend 
the method of r lott ing, as the scale, the zero values, etc. 

When curves are used to 
illustrate the shape of the 
function, so as to show how 
much and in what manner a 
quant i ty varies as function 
of another, large divisions of 
inconspicuous cross-section
ing are desirable, but it is 
essential that the cross-
sectioning should extend to 
the zero values of the func
tion, even if the numerical 
values do not extend so 

F I G . 1 0 4 . Compounding Curve. far, since otherwise a wrong 
impression would be con

ferred. As illustrations are plotted in Figs. 103 and 104, the 
compounding curve of a direct-current generator. The arrange-
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ment in Fig. 103 is correct; it shows the relative variation 
of voltage as function of the load. Fig. 104, in which the 
cross-sectioning does not be 'in at the scale zero, confers the 
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FIG. 105. Curve Plotted to show Characteristic Shape. 

F I G . 106. Curve Plotted for Use as Design Data. 

wrong impression that the variation of voltage is far greater 
than it really is. 

When curves are used to record numerical values and 
derive them from the curve, as, for instance, Sa commonly the 
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case with magnetization curves, it is unnecessary to have the zero 
of the function coincide with the zero of the cross-sectioning, but 
rather preferable not to have it so, if thereby a better scale of 
the curve can be secured. I t is desirable, however, to use suffi
ciently small cross-sectioning to make it possible to take numer
ical values from the curve with good accuracy. This is illus
t ra ted by Figs. 105 and 106. Both show the magnetic charac
teristic of soft steel, for the range above B =8000, in which it is 
usually employed. Fig. 105 shows the proper way of plotting for 
showing the shape of the function, Fig. 106 the proper way of 
plotting for use of the curve to derive numerical values therefrom. 

I 

I I 

I I I 

F I G . 107. Same Function Plotted to Different Scales; I is correct. 

169. Curves should be plotted in such a manner as to show 
the quant i ty which they represent, and its variation, as well as 
possible. Two features are desirable herefor: 

1. To use such a scale tha t the average slope of the curve, 
or a t least of the more important part of it, does not differ 
much from 45 deg. Hereby variations of curvature are best 
shown. To illustrate this, the exponential function y = e~z is 
plotted in three different scales, as curves I, I I , I I I , in Fig. 107. 
Curve I has the proper scale. 

2. To use such a scale, t ha t the to ta l range of ordinates is 
not much different from the to ta l range of abscissas. Thus 
when plott ing the power-factor of an induction motor, in 
Fig. 108, curve I is preferable to curves I I or I I I . 
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These two requirements frequently are a t variance with 
each other, and then a compromise has to be made between 
them, tha t is, such a scale chosen tha t the total ranges of the 
two coordinates do not differ much, and a t the same time 
the average slope of the curve is not far from 45 deg. This 
usually leads to a somewhat rectangular area covered by the 
curve, as shown, for instance, by curve I , in Fig. 107. 

I t is obvious that , where the inherent nature of the curve 
is incompatible with 45 degree slope, this rule does not apply. 
Such for instance is the case with instrument calibration curves, 
which inherently are essentially horizontal lines, with curves 
like the slip of induction motors, etc. 

As regards to the magnitude of the scale of plotting, the larger 
the scale, the plainer obviously is the curve. I t must be kept in 
mind, however, tha t it would be wrong to use a scale which is 
materially larger than the accuracy of the values plotted. 

Thus for instance, in 

11/ \ "1 

m 

plotting the calibration 
curve of an instrument, 
if the accuracy of the 
calibration is not greater 
than .05 per cent, it 
would be wrong to use 
.01 per cent as the unit 
of ordinate scale. 

In curve plotting, a 
scale should be used 
which is easily read. 
Hence, only full scale, 
double scale, and half 
scale should be used. 
Triple scale and one-
third scale are practi

cally unreadable, and should therefore never be used. Quadruple 
scale and quarter scale are difficult to read and therefore unde
sirable, and are generally unnecessary, since quadruple scale is 
not much different from half scale with a ten times smaller unit, 
and quarter scale not much different from double scale of a ten 
times larger unit. 

170. In plotting a curve to show a relation y=f{x), in gen
eral x and y should be plotted directly, on ordinary coordinate 

FIG. 108 . Same Function Plotted to Dif
ferent Scales: I is Correct. 
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paper, bu t not log x, or y2, or logarithmic paper used, etc., as 
this would not show the shape of the relation y=f(x). Using 
for instance semi-logarithmic paper, t ha t is, with logarith
mic abscissae and ordinary ordinates, the plotted curve would 
show the shape of the relation y=f (log x), etc. The use of 
logarithmic paper, or the use of y2, or -\/x as coordinate, etc., is 
justified only where the purpose is to show the relation between 
y and log x, or between y2 and x, or between y and y/x, etc., as is 
the case when investigating the equation of an empir cal curve, 
or when intending to show some particular feature of the relation 
y =f(x). Thus for instance when plotting the power p consumed 
by corona in a high potential transmission fine, as function of the 
line voltage e, by using s/p as ordinate, a straight line results. 
Also where some particular function of one of the coordinates, 
as log x, gives a more rational relation, it may be used instead 
of x. Thus for instance in radiation curves, or when expressing 
velocity as function of wave length or frequency, or expressing 
at tenuation of a wireless wave, etc., the log of wave length or 
frequency, tha t is, the geometric scale (as used in the theory of 
sound, with the octave as unit) is more rational and therefore 
preferable. 

Sometimes the values of a relationship extend over such a 
wide range as to make it impossible to represent all of them in 
one curve, and then a number of curves may have to be used, 
with different scales. In such cases, the logarithmic scale often 
brings all values within one curve without improperly crowding, 
and especially where the purpose of curve plotting is not so 
much to show the shape of the relation, as to record for the pur
pose of taking numerical values from the curve, the lat ter ar
rangement, t ha t is, the use of logarithmic or semi-logarithmic 
paper may be desirable. Thus the magnetic characteristic of 
iron is used over a range of field intensities from very few am
pere turns per cm. in transformers, to thousands of ampere 
turns, in tooth densities of railway motors, and the magnetic 
characteristic thus is either represented by three curves with 
different scales, of ratios 1-H10-Í-100, as shown in Fig. 109, or 
the log of field intensity used as abscissae, tha t is, semi-logarith
mic paper, with logarithmic scale as abscissae, and regular scale 
as ordinates, as shown in Fig. 110. 

I t must be realized tha t the logarithmic or geometrical scale 
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—in which equal divisions represent not equal values of the 
quant i ty , but equal fractions of the quantity—is somewhat 
less easy to read than common scale. However, as it is the same 
scale as the slide rule, this is not a serious objection. 

A disadvantage of the logarithmic scale is tha t it cannot 
extend down to zero, and relations in which the entire range 
down to zero requires consideration, thus are not well suited 
for the use of logarithmic scale. 

1 7 1 . Any engineering calculation on which it is worth 
while to devote any time, is worth being recorded with suffi
cient completeness to be generally intelligible. Very often in 
making calculations the data on which the calculation is based, 
the subject and the purpose of the calculation are given incom
pletely or not at all, since they are familiar to the calculator at 
the time of calculation. The calculation thus would be unin
telligible to any other engineer, and usually becomes unintelli
gible even to the calculator in a few weeks. 

In addition to the name and the date, all calculations should 
be accompanied by a complete record of the object and purpose 
of the calculation, the apparatus, the assumptions made, the 
data used, reference to other calculations or data employed, 
etc., in short, they should include all the information required 
to make the calculation intelligible to another engineer without 
further information besides tha t contained in the calculations, 
or in the references given therein. The small amount of t ime 
and work required to do this is negligible compared with the 
increased utility of the calculation. 

Tables and curves belonging to the calculation should in 
the same way be completely identified with it and contain 
sufficient data to be intelligible. 

1 7 1 A . Engineering investigations evidently are of no value, 
unless they can be communicated to those to whom they are of 
interest. Thus the engineering report is an essential and im
portant part of the work. If therefore occasionally an engineer 
or scientist is met, who is so much interested in the investigating 
work, t ha t he hates to " w a s t e " the time of making proper and 
complete reports, this is a very foolish at t i tude, since in general 
it destroys the value of the work. 

As practically every engineering investigation is of interest 
and importance to different classes of people, as a rule not one, 
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but several reports must be written to make the most use of 
the work; the scientific record of the research would be of no 
more value to the financial interests considering the industrial 
development of the work than the report to the financial or 
administrative body would bs of value to the scientist, who 
considers repeating and continuing the investigation. 

In general thus three classes of engineering reports can be 
distinguished, and all three reports should be made with every 
engineering investigation, to get best use of it. 

(a) The scientific record of the investigation. This must be 
so complete as to enable another investigator to completely check 
up, repeat and further extend the investigation. I t thus must 
contain the original observations, the method of work, apparatus 
and facilities, calibrations, information on the limits of accuracy 
and reliability, sources of error, methods of calculation, etc., etc. 

I t thus is a lengthy report, and as such will be read by very few, 
if any, except other competent investigators, but is necessary 
as the record of the work, since without such report, the work 
would be lost, as the conclusions and results could not be checked 
up if required. 

This report appeals only to men of the same character as the 
one who made the investigation, and is essentially for record 
and file. 

(6) The general engineering report. I t should be very much 
shorter than the scientific report, should be essentially of the 
nature of a syllabus thereof, avoid as much as possible complex 
mathematical and theoretical considerations, but give all the 
engineering results of the investigation, in as plain language as 
possible. I t would be addressed to administrative engineers, 
tha t is, men who as engineers are capable of understanding the 
engineering results and discussion, but have neither time nor 
familiarity to follow in detail through the investigation, and are 
not interested in such things as the original readings, the discus
sion of methods, accuracy, etc., but are interested only in the 
results. 

This is the report which would be read by most of the men 
interested in the matter. I t would in general be the form in 
which the investigation is communicated to engineering societies 
as paper, with the scientific report relegated into an appendix of 
the paper. 
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(c) The general report. This should give the results, that is, 
explain what the matter is about, in plain and practically non
technical language, addressed to laymen, that is, non-engineers. 
In other words, it should be understood by any intelligent non
technical man. 

Such general report would be materially shorter than the 
general engineering report, as it would omit all details, and 
merely deal with the general problem, purpose and solution. 

In general, it is advisable to combine all three reports, by 
having the scientific record preceded by the general engineering 
report, and the latter preceded by the general report. Roughly, 
the general report would usually have a length of 20 to 40 per 
cent of the general engineering report, the latter a length of 10 
to 25 per cent of the complete scientific record. 

The bearing of the three classes of reports may be understood 
by illustration on an investigation which appears of commercial 
utility, and therefore is submitted for industrial development to 
a manufacturing corporation; the financial and general adminis
trative powers of the corporations, to whom the investigation is 
submitted, would read the general report and if the matter 
appears to them of sufficient interest for further consideration, 
refer it to the engineering department. The general report thus 
must be written for, and intelligible to the non-engineering 
administrative heads of the organization. The administrative 
engineers of the engineering department then peruse the general 
engineering report, and this report thust must be an engineering 
report, but general and not require the knowledge of the specialist 
in the particular field. If then the conclusion derived by the 
administrative engineers from the reading of the general engineer
ing report is to the effect that the matter is worth further con
sideration, then they refer it to the specialists in the field covered 
by the investigation, and to the latter finally the scientific record 
of the investigation appeals and is studied in making final report 
on the work. 

Inversely, where nothing but a lengthy scientific report is 
submitted, as a rule it will be referred to the engineering depart
ment, and the general engineer, even if he could wade through 
the lengthy report, rarely has immediately time to do so, thus 
lays it aside to study sometime at his leisure—and very often 
this time never comes, and the entire matter drops, for lack of 
proper representation. 
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Thus it is of the utmost importance for the engineer and the 
scientist, to be able to present the results of his work not only by 
elaborate and lengthy scientific report, but also by report of 
moderate length, intelligible without difficulty to the general 
engineer, and by short statement intelligible to the non-engineer. 

d. Reliability of Numerical Calculations. 

172 . The most important and essential requirement of 
numerical engineering calculations is their absolute reliability. 
When making a calculation, the most brilliant ability, theo
retical knowledge and practical experience of an engineer are 
made useless, and even worse than useless, by a single error in 
an important calculation. 

Reliability of the numerical calculation is of vastly greater 
importance in engineering than in any other field. In pure 
mathematics an error in the numerical calculation of an 
example which illustrates a general proposition, does not detract 
from the interest and value of the latter, which is the main 
purpose; in physics, the general law which is the subject of 
the investigation remains true, and the investigation of interest 
and use, even if in the numerical illustration of the law an 
error is made. With the most brilliant engineering design, 
however, if in the numerical calculation of a single structural 
member an error has been made, and its strength thereby calcu
lated wrong, the rotor of the machine flies to pieces by centrifugal 
forces, or the bridge collapses, and with it the reputation of the 
engineer. The essential difference between engineering and 
purely scientific caclulations is the rapid check on the correct
ness of the calculation, which is usually afforded by the per
formance of the calculated structure—but too late to correct 
errors. 

Thus rapidity of calculation, while by itself useful, is of no 
value whatever compared with reliability—that is, correctness. 

One of the first and most important requirements to secure 
reliability is neatness and care in the execution of the calcula
tion. If the calculation is made on any kind of a sheet of 
paper, with lead pencil, with frequent striking out and correct
ing of figures, etc., it is practically hopeless to expect correct 
results from any more extensive calculations. Thus the work 
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should be done with pen and ink, on white ruled paper; if 
changes have to be made, they should preferably be made by 
erasing, and not by striking out. In general, the appearance of 
the work is one of the best indications of its reliability. The 
arrangement in tabular form, where a series of values are calcu
lated, offers considerable assistance in improving the reliability. 

173. Essential in all extensive calculations is a complete 
system of checking the results, to insure correctness. 

One way is to have the same calculation made independently 
by two different calculators, and then compare the results. 
Another way is to have a few points of the calculation checked 
by somebody else. Neither way is satisfactory, as it is not 
always possible for an engineer to have the assistance of another 
engineer to check his work, and besides this, an engineer should 
and must be able to make numerical calculations so tha t he can 
absolutely rely on their correctness without somebody else 
assisting him. 

In any more important calculations every operation thus 
should be performed twice, preferably in a different manner. 
Thus, when multiplying or dividing by the slide rule, the multi
plication or division should be repeated mentally, approxi
mately, as check; when adding a column of figures, it should be 
added first downward, then as check upward, etc. 

Where an exact calculation is required, first the magnitude 
of the quant i ty should be estimated, if not already known, 
then an approximate calculation made, which can frequently 
be done mentally, and then the exact calculation; or, inversely, 
after the exact calculation, the result may be checked by an 
approximate mental calculation. 

Where a series of values is to be calculated, i t is advisable 
first to calculate a few individual points, and then, entirely 
independently, calculate in tabular form the series of values, 
and then use the previously calculated values as check. Or, 
inversely, after calculating the series of values a few points 
should independently be calculated as check. 

When a series of values is calculated, it is usually easier to 
secure reliability than when calculating a single value, since 
in the former case the different values check each other. There
fore it is always advisable to calculate a number of values, 
tha t is, a short curve branch, even if only a single point is 
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required. After calculating a series of values, they are plotted 
as a curve to see whether they give a smooth curve. If the 
entire curve is irregular, the calculation should be thrown away, 
and the entire work done anew, and if this happens repeatedly 
with the same calculator, the calculator is advised to find 
another position more in agreement with his mental capacity. 
If a single point of the curve appears irregular, this points to 
an error in its calculation, and the calculation of the point is 
checked; if the error is not found, this point is calculated 
entirely separately, since it is much more difficult to find an 
error which has been made than it is to avoid making an 
error. 

174. Some of the most frequent numerical errors are: 
1. The decimal error, that is, a misplaced decimal point. 

This should not be possible in the final result, since the magni
tude of the latter should by judgment or approximate calcula
tion be known sufficiently to exclude a mistake by a factor 10. 
However, under a square root or higher root, in the exponent 
of a decreasing exponential function, etc., a decimal error may 
occur without affecting the result so much as to be immediately 
noticed. The same is the case if the decimal error occurs in a 
term which is relatively small compared with the other terms, 
and thereby does not affect the result very much. For instance, 
in the calculation of the induction motor characteristics, the 
quantity r i 2 + s 2 a ; i 2 appears, and for small values of the slip s, 
the second term s 2 X i 2 is small compared with n 2 , so that a 
decimal error in it would affect the total value sufficiently to 
make it seriously wrong, but not sufficiently to be obvious. 

2. Omission of the factor or divisor 2. 
3. Error in the sign, that is, using the plus sign instead of 

the minus sign, and inversely. Here again, the danger is 
especially great, if the quantity on which the wrong sign is 
jsed combines with a larger quantity, and so does not affect 
the result sufficiently to become obvious. 

4. Omitting entire terms of smaller magnitude, etc. 
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NOTES ON THE THEORY OF FUNCTIONS. 

A. General Functions. 

1 7 5 . The most general algebraic expression of powers of 
x and y, 

F{x,y) = {a0o + a01x + a02x2 + . • .)+{ai0+anx + ai2x2 +. . .)y 

is the implicit analytic function. I t relates y and x so tha t to 
every value of x there correspond n values of y, and to every 
value of y there correspond m values of x, if m is the exponent 
of the highest power of x in (1). 

Assuming expression (1) solved for y (which usually cannot 
be carried out in final form, as it requires the solution of an 
equation of the n th order in y, with coefficients which are 
expressions of x), t he explicit analytic function, 

is obtained. Inversely, solving the implicit function (1) for 
x, t h a t is, from the explicit function (2), expressing x as 
function of y, gives the reverse function of (2) ; t h a t is 

In the general algebraic function, in its implicit form (1), 
or the explicit form (2), or the reverse function (3), x and y 
are assumed as general numbers; tha t is, as complex quan
ti t ies; thus , 

+ (a2o+a2ix+a22x2 + . . .)y2+. . • 
+ (ano+a„ix+an2x2 + . . . )yn = 0, (1) 

(2) 

x=fi(y) (3) 

and likewise are the coefficients ooo, o o i . . . a, 
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t ha t is, the explicit form (2) of equation (1) contains in this 
case a square root. 

For n>2, the explicit form y=f(x) either becomes very 
complicated, for n = 3 and n = 4, or cannot be produced in 
finite form, as it requires the solution of an equation of more 
than the fourth order. Nevertheless, y is still a function of 
x, and can as such be calculated by approximation, etc. 

To find the value y\, which by function (1) corresponds to 
x = X\, Taylor 's theorem offers a rapid approximation. Sub
sti tuting xi in function (1) gives an expression which is of 
the n th order in y, t hus : F(xiy), and the problem now is to 
find a value yh which makes F(x\,yx) = 0 . 

However, 

rv N m ^ ,udF(xhy) ih
2<PF{xl,y) , 

F(xi,yi) = F(xhy)+h—^—+^—¿2^— + ( 8 ) 

where h = yi—y is the difference between the correct value yi 
and any chosen value y. 

If all the coefficients a are real, and x is real, the corre
sponding n values of y are either real, or pairs of conjugate 
complex imaginary quanti t ies: yi+jy2 and yi — jy2. 

176. For n = l , the implicit function (1), solved for y, gives 
the rational function, 

aoo + aoix+ao2X2 + . . . 
y~a10 + anx + ai2x

2 + .. ' ^ ' 

and if in this function (5) the denominator contains no x, the 
integer function, 

y=*aQ+aix+a2x
2 + . . . +amx

m, , . . . (6) 

is obtained. 
For n = 2, the implicit function (1) can be solved for y as a 

quadratic equation, and thereby gives 

— (a 1 04- anx+aitx
2 + —)± 

\ (o , 0 +q n x+a 1 2 x
2 + . . . Y - 4 ( o M + am

x+"oa*2 + —) ( °»+ a n*+"ir" ' + —) 
y~ 2{a20+a2¡x + a2íx

1 + ...) '>('> 
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Neglecting the higher orders of the small quant i ty h, 
(8), and considering tha t F(x\,iji) = 0 , gives 

A = -
dF(xhy)' 

dy 

and herefrom is obtained yi=y+h, as first approximation. 
Using this value of j/i as y in (9) gives a second approximation, 
which usually is sufficiently close. . 

177- New functions are defined by the integrals of the 
analytic functions (I) or (2), and by their reverse functions. 
They are called Abelian integrals and Ahelian functions. 

Thus in the most general case (1), the explicit function 
corresponding to (1) being 

the integral, 
y=f(x), . . 

z=j'f(x)dx, 

(2) 

then is the general Abelian integral, and its reverse function, 

x=<¡>{¿), 

the general Abelian function. 
(a) In the case, n = l , function (2) gives the rational function 

C5), and its special case, the integer function (6). 
Function (6) can be integrated by powers of x. (5) can be 

resolved into partial fractions, and thereby leads to integrals 
of the following forms : 

(1) J"xmdx; 

C dx 
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Integrals (10), (1), and (3) integrated give rational functions, 
(10), (2) gives the logarithmic function log (x—a), and (10), (4) 
the arc function arc tan x. 

As the arc functions are logarithmic functions with complex 
imaginary argument, this case of the integral of the rational 
function thus leads to the logarithmic function, or the loga
rithmic integral, which in its simplest form is 

* = J ^ = logz , (11) 

and gives as its reverse function the exponential function, 

x=€° (12) 

I t is expressed by the infinite series, 
Z2 z3 7* 

-" = 1 + * + | 2 + J 3 + Î 4 + ( 1 3 ) 

as seen in Chapter I I , paragraph 53. 
178. 6. In the case, n = 2, function (2) appears as the expres

sion (7), which contains a square root of some power of x. Its 
first part is a rational function, and as such has already been 
discussed in a. There remains thus the integral function, 

\/b0+blx+b2x2 + . . . + f V » 
5 ax. . . . (14) 

Cu+ClX + C2X2 + . . . 

This expression (14) leads to a series of important functions. 
(1) For p = l or 2, 

- f x / b o 

J Cn+ci 
+ blx + b2x2 

= dx 15) 

By substitution, resolution into partial fractions, and 
eparation of rational functions, this integral (11) can be 

reduced to the standard form, 

i_Jx_ 
(16) 

In the case of the minus sign, this gives 
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and as reverse functions thereof, there are obtained the trigo
nometric functions. 

x = sin 2, 1 

/ d») 
V l — X2 = cos z. J 

In the case of the plus sign, integral (16) gives 

2 = Í — ^ = = - l o g { V Ï + 
J VT+x2 k l 

x¿—x\=arc s inh x, (19) 

and reverse functions thereof are the hyperbolic functions, 

x = -

Vl+x2--
i + 2 + . 

= sinh z; 

- cosh z. 

(20) 

The trigonometric functions are expressed by the series: 

•g3 £r5 

sin 2 = 2 — [ j j + i g - j j +• 

2 2 2* 2 e 

COS 2 = 1 — n T + r r — Î 7 T + . 

2 4 b 

(21) 

as seen in Chapter I I , paragraph 58. 
The hyperbolic functions, by substi tuting for e + z and e~ 

the series (13), can be expressed by the series: 

sinh 2 = 2+1+1 + ̂ +...; 
z4 z6 

COsh 2 = 1 +pr+rr +ÎF +• • • • 

Ü 11 iE. 
179. I n the next case, p = 3 or 4, 

J i 

(22) 

i + bix + b2x
2 + bzx3 + Ò4X 4 

C0+CiX+C2X
2 + . . . 

dx, (23) 

already leads beyond the elementary functions, t ha t is, (23) 
cannot be integrated by rational, logarithmic or arc functions, 



APPENDIX A. 299 

but gives a new class of functions, the elliptic integrals, and 
their reverse functions, the elliptic functions, so called, because 
they bear to the ellipse a relation similar to tha t , which the 
trigonometric functions bear to the circle and the hyperbolic 
functions to the equilateral hyperbola. 

The integral (23) can be resolved into elementary functions, 
and the three classes of elliptic integrals : 

(These three classes of integrals may be expressed in several 
different forms.) 

The reverse functions of the elliptic integrals are given by 
the elliptic functions : 

known, respectively, as sine-amplitude, cosine-amplitude, delta-
amplitude. 

Elliptic functions are in some respects similar to trigo
nometric functions, as is seen, but they are more general, 
depending, as they do, not only on the variable x, but also on 
the constant c. They have the interesting property of being 
doubly periodic. The trigonometric functions are periodic, with 
the periodicity 2iz, tha t is, repeat the same values after every 
change of the angle by 2K. The elliptic functions have two 
periods pi and p2, t ha t is, 

(24) 

V x = sin am(u, c) ; 

VT^- x = cos am (u, c); • (25) 

Vl —c2x = dam(u, c); 

sin am(u+npi +mp2, c) =s in am(u, c), e tc . ; (26) 

hence, increasing the variable u by any multiple of either 
period pi and p2, repeats the same values. 
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_ r 1 dx 

Pl~X 2\'x(l-x)(\-c2x)' 
dx p2 

(27) 

2 V I ( 1 - I ) ( 1 - A ) 

180. Elliptic functions can be expressed as ratios of two 
infinite series, and these series, which form the numerator and 
the denominator of the elliptic function, are called theta func
tions and expressed by the symbol 0, thus 

sin am(u, c) = 

cos am( 

Jamiu, c) = -îll — c2-

2p. 

(28) 

and the four 6 functions may be expressed by the scries : 

0o(x) = 1 — 2q cos 2x+2q4 cos 4x -2q9 cos 6x H . . . ; ' 
2 5 

0i(z) = 2q1/4 sin a; - 2 ç 9 / 4 sin 3x+2q* sin 5x - + . . . : 
2 5 

02(x) = 2 ç 1 / 4 cos x +2q9/i cos 3x +2q~* cos 5x + . . . : 

03(x) =l+2q cos 2x + 2 ç 4 cos 4x +2q9 cos 6x + . . . , 

, (29) 

here 

o = e ° and a = ? 7 T — . 

• p i 
(30) 

In the case of integral function (14), where p > 4 , similar 
i.ilegrals and their reverse functions appear, more complex 

The two periods are given by the equations, 
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than the elliptic functions, and of a greater number of periodici
ties. They are called hyperelliptic integrals and hyperelliptic 
functions, and the latter are again expressed by means of auxil
iary functions, the hyperelliptic 6 functions. 

181. Many problems of physics and of engineering lead to 
elliptic functions, and these functions thus are of considerable 
importance. For instance, the motion of the pendulum is 
expressed by elliptic functions of t ime, and its period thereby 
is a function of the amplitude, increasing with increasing ampli
tude : that is, in the so-called "second pendulum," the t ime of 
one swing is not constant and equal to one second, but only 
approximately so. This approximation is very close, as long 
as the amplitude of the swing is very small and constant, but 
if the amplitude of the swing of the pendulum varies and 
reaches large values, the time of the swing, or the period ot 
the pendulum, can no longer be assumed as constant and an 
exact calculation of the motion of the pendulum by elliptic 
functions becomes necessary. 

In electrical engineering, one has frequently to deal with 
oscillations similar to those of the pendulum, for instance, 
in the hunting or surging of synchronous machines. In 
general, the frequency of oscillation is assumed as constant, 
but where, as in cumulative hunting of synchronous machines, 
the amplitude of the swing reaches large values, an appreciable 
change of the period must be expected, and where the hunting 
is a resonance effect with some other periodic motion, as the 
engine rotation, the change of frequency with increase of 
amplitude of the oscillation breaks the complete resonance and 
thereby tends to limit the amplitude of the swing. 

182. As example of the application of elliptic integrals, may 
be considered the determination of the length of the arc of an 
ellipse. 

Let the ellipse of equation 

( 3 1 ) 

be represented in Fig. 93, with the circumscribed circle, 

x 2 + j / 2 = a 2. (32) 
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To every point P = x, y of the ellipse then corresponds a 
point Pi=x, yi on the circle, which has the same abscissa x, 
and an angle 0 = AOP\. 

The arc of the ellipse, from A to P, then is given by the 
integral, 

( l ~ c 2 z ) d z . . . . (33) 

where 

L = a 

0 = s i n 2 0 = 

; 0 2 V / 2 ( 1 - 2 ) ( 1 - C % ) 

>-£)* 
is t he eccentricity of the ellipse 

and c = 
Vu2-b2 

(34) 

Ai 

i* / 

I a 

Âj 

I 0 

Fia. 93. Rectification of Ellipse. 

Thus the problem leads to an elliptic integral of the first 
and of the second class. 

For more complete discussion of the elliptic integrals and 
the elliptic functions, rererence must be made to the text-books 
of mathematics. 

B. Special Functions. 

183- Numerous special functions have been derived by the 
exigencies of mathematical problems, mainly of astronomy, but 
in the lat ter decades also of physics and of engineering. Some 
of them have already been discussed as special cases of the 
general Abelian integral and its reverse function, as the expo
nential, trigonometric, hyperbolic, etc., functions. 
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sin 

184. Integration of known functions frequently leads to new 
functions. Thus from the general algebraic functions were 

Functions may be represented by an infinite series of terms; 
tha t is, as a sum of an infinite number of terms, which pro
gressively decrease, tha t is, approach zero. The denotation of 
the terms is commonly represented by the summation sign 2 . 

Thus the exponential functions may be written, when 
defining, 

|0 = 1; |n = l X 2 X 3 x 4 x . . .Xn , 

as 

• " - 1 + 1 + j 2 + j 3 + - • • • • ( 3 5 ) 

X™> 

which means, tha t terms ,— are to be added for all values of n 
la. 

from n = 0 to 71 = GC . 
The trigonometric and hyperbolic functions may be written 

in the form : 

. X 3 X 5 . T 7 X x 2 n + l 

B I n x - x ^ + [ 5 - | 7 + . . . - S - ( - l ) - j ^ + r ; • (36) 

„ X 2 Xa
 X 6 o ° X 2 " . „ _ . 

o o B X - l - ^ + r £ - | g + . . . - S - ( - l ) - ^ ; . • (37) 

S i n h x = x + i 3 + g + ^ + . . . = J » | 2 ^ ; . . . (38) 

jç2 30 3^** 
c o s h x = l + p + j î + j g + . . . = S n _ (39) 

Functions also may be expressed by a series of factors; 
tha t is, as a product of an infinite series of factors, which pro
gressively approach unity. The product series is commonly 
represented by the symbol 'fj~. 

Thus, for instance, the sine function can be expressed in the 
form, 
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derived the Abelian functions. In physics and in engineering, 
integration of special functions in this manner frequently leads 
to new special functions. 

For instance, in the study of the propagation through space, 
of the magnetic field of a conductor, in wireless telegraphy, 
lightning protection, etc., we get new functions. If i—f(t) 
is the current in the conductor, as function of the t ime t, at a 
distance x from the conductor the magnetic field lags by the 

x 
t ime ti=—, where S is the speed of propagation (velocity of 

o 
light). Since the field intensity decreases inversely propor
tional to the distance x , it thus is proportional to 

and the to ta l magnetic flux then is 

z=J~ydx 

8. 
•dx. (42) 

If the current is an alternating current, tha t is, f(t) a 
trigonometric function of time, equation (42) leads to the 
functions, 

Çsin x , 
u= I dx; 

J x 

/
cos X , 

dx. 
x 

(43) 

If the current is a direct current, rising as exponential 
function of the t ime, equation (42) leads to the function, 

w-
/ e*dx 

Í44> 
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sin x xA xö X' 
—dx = x - ^ + - ^ - ^ 

(45) 
/

i w i , . x- x* x6 

Ç-* , x2 x3 

J T d x = hgx + x+^+]j-i+... 

For further discussion and tables of these functions see 
"' Theory and Calculation of Transient Electric Phenomena and 
Oscillations," Section I I I , Chapter VII I , and Appendix. 

i8S. If y=f (x) is a function of x, and z=J'f (x)dx = <f>(x) 

its integral, the definite integral, Z = j f(x)dx, is no longer 

a function of x but a constant, 

Z = <f>(b)-<j>(a). 

For instance, if j / = c(x —n) 2 , then 

/
,• \2J c(x-n)3 

c{x—n)2dx= g , 

and the definite integral is 

X b c 
c(x -n)2dx = 2¡(b-n)3-(a-n)3}. 

This definite integral does not contain x, but it contains 
all the constants of the function / (x), thus is a function of 
these constants c and n, as it varies with a variation of these 
constants. 

In this manner new functions may be derived by definite 
integrals. 

Thus, if 
y=f(x,u,v...) (46) 

is a function of x, containing the constants w, v .. . 

Substi tuting in (43) and (44), for sin x, cos x, ex their 
infinite series (21) and (13), and then integrating, gives the 
following : 
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X
0O 

is a new function of u, called the gamma function. 
Some properties of this function may be derived by partial 

integration, thus : 

r ( t t + l ) = t t T ( « ) ; (50) 

if n is an integer number, 

r ( « ) = ( t t - l ) ( t i - 2 ) . . . ( « - n ) r ( t t - n ) , . . (51) 
and since 

f ( D = l , (52) 

if u is an integer number, then, 

r(u) = \u-i. (53) 

C. Exponential, Trigonometric and Hyperbolic Functions. 

(a) FUNCTIONS OF R E A L VARIABLES. 

187. The exponential, trigonometric, and hyperbolic func
tions are defined as the reverse functions of the integrals, 

o. u = ^ Y = log£, (54) 

a n d : x=ew (55) 

f dx 

The definite integral, 

Z=£f(x,u,v...)dx, (47) 

is not a function of x, but still is a function of u, v.. . , and 
may be a new function. 

186. For instance, let 

y = e - x 3 * - i . ) (48) 

then the integral, 
f-x> 

(49) 
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^ = = = - l o g í V T + ^ - x ¡ ; c. «- I - 7 = = = - l o g í V l + ^ - x ¡ ; . . . . (59) 

s" — î ~ " 
and x=-—g—=sinhw; . . . . (60) 

Vl+x2=e" + £ U = cqshu (61) 

From (57) and (58) it follows that 

s in 2 w+cos 2 u = l (62) 

From (60) and (61) it follows tha t 

cos 2 hu — sin 2hu = 1. (63 ) 

Substituting ( — x) for x in (56), gives ( — u) instead of u, 
and therefrom, 

sin ( —w) = —sin u (64) 

Substituting (—u) for u in (60), reverses the sign of x, 
tha t is, 

sinh ( — u)= — sinh u. . . . (65) 

Substituting ( — x) for x in (58) and (61), does not change 
the value of the square root, tha t is, 

cos ( — u) =cos u, (66) 

cosh ( —w) = cosh n, ((57) 

Which signifies that cos u and cosh u are even functions, while 
sin u and sinh u are odd functions. 

Adding and subtracting (60) and (61), gives 

£ ± u = cosh u ± s i n h u (68) 

a n d : x = s i n w , (57) 

Vl-x2 = cos u, (58) 
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( 5 6 ° u = / v f e ? ; ( 5 9 ° " ' J V T + x 2 ' 

£" — £ 
x = s i n w ; x = s i n h u = — ^ — 

£" + £" 
V l + x 2 = cos u; . V l + x 2 = eosh u= ^ 

dy . 
hence, J'M = J " - ^ = = = , hence, = 

j / = sinh/t t = ^ ; y = sinju; . . . (69) 

V l +i/2 = cosh ju = 2 ? V l — i / 2 = cos /it; . . . (70) 

Resubsti tuting x in both 

sinh ju , e « _ e - u gin fu 
x = sinw = rJ— = — ; x = sinhw = — x — = — : — ; (71) 

j 2-i ' 2 1 

V l — x 2 = cos M = cosh ju V l + x 2 = coshu = ^ 

= cos fu. . (72) 

Adding and subtracting, 

£ ± J U = C O S u±f g in M = cosh ; w ± s i u h fu 

and £ ± u = cosh u ± s i n h tt = cos / u T / s i n ju. . . (73) 

(c) FUNCTIONS OF COMPLEX VARIABLES 

189. I t i s : 

ÇU±J» = £ » £ ± J " » = £ > I ( C O S i>±/s in v); . . . (74) 

(b) FUNCTIONS OF IMAGINARY VARIABLES. 

188. Substituting, in (56) and (59), x = — jy, thus y = fx, gives 

dx 
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sin (u±jv) =s in u cos jv±cos u sin jv 

£ L 4 e = sin u cosh v ± j cos u sinh v = — - — s i n u ± j—^—cos M ; 

cos(u ± jv) = cos u cos jï 'T sin u sin jV 

£" + £"'' .£"-£~v . 

= cos u cosh v T ; sin « sinh i> = — ^ — c o s w =F j — s — sin M : 

sinh(w ± jV) = ^ = — — — c o s v ± 7 — 2 — S ' N V 

= sinh M cos r ± j cosh u sin 

£ u ± J i > _|_ £ —u=F Jt' £ K _ | _ £ — u £ ' i £ — u 

cosh(w±/u) = 2 = — 2 — C O S V ± ? — 2 — S ^ N V 

= cosh M cos v±j sinh M sin v; 
etc. 

(75) 

(76) 

(77) 

(78) 

(d) RELATIONS. 

190. From the preceding equations it thus follows tha t the 
three functions, exponential, trigonometric, and hyperbolic, 
are so related to each other, tha t any one of them can be 
expressed by any other one, so- tha t when allowing imaginary 
and complex imaginary variables, one function is sufficient. 
As such, naturally, the exponential function would generally 
be chosen. 

Furthermore, it follows, that all functions with imaginary 
and complex imaginary variables can be reduced to functions 
of real variables by the use of only two of the three classes 
of functions. In this case, the exponential and the trigono
metric functions would usually be chosen. 

Since functions with complex imaginary variables can be 
resolved into functions with real variables, for their calculation 
tables of the functions of real variables are sufficient. 

The relations, by which any function can be expressed by 
any other, are calculated from the preceding paragraph, by 
the following equations : 
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s i n u = -
7 2j ' 

£ t > _ £ - u 

sin j» = / s i uh v = j 

sin (it ±;V) = s i n u cosh v ± j cos w sinh v 
gv _ |_ £ — u £ t , _ £ — v 

= — 2 — s i n u ± j — ^ — c o s u; 

c o s « = c o 3 h ;w= ^ ; 

£i»-f- £—»'» 
cos ju = cosh v = ^ ; 

cos (u ± jv) = cos u cosh v T j sin M sinh v 

= — 2 " — c o s 1 i = F/~—r;— sin u: 

sinh M = -

sinh jv — j sin v 

1 ' 
{j« _ £ - f» 

2 ' 

sinh (u±jv) = s inh u cos 11 ±j cosh u sin u 
£ u _ £ - u _ £ u _ | _ £ - u _ 

= — 2 — C O S " ± 7 — 2 — s l n v ' 

cosh u = — 2 = cos ]u; 

cosh jv = cos v = ^ ; 

cosh (w ± jv) = cosh u cos v ± j sinh u sin v 
£«+£-» £«— £-« 

= — 2 — c o s i ' ± j — 2 " — . s u i t . 

f ± u = cosh M ± s i n h u = cos ju+~j sin ju; 

£±j» = c o s v±jsin r = cosh jv±jsinh jv; 

eu±i«= £u ( c o g v ±j g j n j , ^ 

sinh ju e'"— £ _ , n 
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And from (ò) and (d), respectively (c) and (e), it follows that 

sinh (w ± jv) = j sin ( ± v—ju) = ± ; sin (v ± ju) ; 

cosh (u ± jv) = cos (r> T J M ) • J 

Tables of the exponential functions and their logarithms, 
and of the hyperbolic functions with real variables, are giver 
in the following Appendix B. 
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TWO TABLES OF EXPONENTIAL AND HYPERBOLIC 
FUNCTIONS. 

TABLE I . 

( = 2.7183, log £ = 0.4343. 

X x io - ' X 1 0 - ' x i o - i X I 

1.0 0 .999 0 .990 0 .905 0 . 3 6 8 

1.2 0 .988 0 .887 0 .301 
1.4 0 .98« 0 . 8 6 9 0 .247 
1.6 0 .984 0 . 8 5 2 0 . 2 0 2 
1.8 0 . 9 8 2 0 . 8 3 5 0 .165 

2 . 0 0 .998 0 .980 0 . 8 1 9 0 .135 

2 . 5 0 .975 0 . 7 7 9 0 . 0 8 2 
3 . 0 0 .997 0 .970 0 .741 0 .050 
3 . 5 0 .966 0 .705 0 .030 
4 . 0 0 .996 0 .961 0 .670 0 .018 
4 . 5 0 .956 0 .638 0 .011 

5 . 0 0 .995 0 .951 0 .607 0 .007 

6 0 . 9 9 4 0 . 9 4 2 0 . 5 4 9 0 . 0 0 2 
7 0 . 9 9 3 0 . 9 3 2 0 .497 0 .001 
8 0 . 9 9 2 0 .923 0 .449 0 .000 
9 0 .991 0 .914 0 .407 

10 0 .990 0 .905 0 .368 

312 
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TABLE I I . 

EXPONENTIAL AND HYPERBOLIC FUNCTIONS. 
e - 2 . 7 1 8 2 8 2 ~ 2 . 7 1 8 3 , l o g £ = 0 . 4 3 4 2 9 4 5 — 0 . 4 3 4 3 . 

c o s h I = èJ£ + I + £ _ I j , s i n h 1 = J | £ + * - e~'\. 

p . p . 

4 3 4 4 3 5 

0 0 0 

0 . 1 4 3 4 3 

0 . 2 8 7 8 7 

0 . 3 130 130 

0 . 4 1 7 4 1 7 4 

0 . 5 2 1 7 2 1 7 

0 . 6 2 6 1 2 6 1 

0 . 7 3 0 4 3 0 4 

0 . 8 3 4 7 3 4 8 

0 . 9 3 9 1 391 

1 . 0 4 3 4 4 3 5 

0 . 0 0 6 

0 . 0 0 7 

0 . 0 0 8 

0 . 0 0 9 

0 . 0 1 0 

0 0 1 2 

0 . 0 1 4 

0 . 0 1 6 

0 . 0 1 8 

0 

0 . 0 0 1 

0 . 0 0 2 

0 . 0 0 3 

0 . 0 0 4 

0 . 0 0 0 4 3 4 

0 . 0 0 0 8 6 9 

0 . 0 0 1 3 0 3 

0 . 0 0 1 7 3 7 

0 . 0 0 5 0 . 0 0 2 1 7 1 

l o g f H 

0 . 0 0 2 6 0 6 

0 . 0 0 3 0 4 0 

0 . 0 0 3 4 7 4 

0 . 0 0 3 9 0 9 

0 . 0 0 4 3 4 3 

0 . 0 0 5 2 1 2 

0 . 0 0 6 0 8 0 

0 . 0 0 6 9 4 9 

0 . 0 0 7 8 1 7 

0 . 0 2 0 0 . 0 0 8 6 8 6 

0 . 0 2 5 

0 . 0 3 0 

0 . 0 3 5 

0 . 0 4 0 

0 . 0 4 5 

0 . 0 5 0 

0 . 0 6 

0 . 0 7 

0 0 8 

0 . 0 9 

0 . 1 0 

0 . 1 2 

0 . 1 4 

0 . 1 6 

0 . 1 8 

0 . 2 0 

0 . 0 1 0 8 5 

0 . 0 1 3 0 2 9 

0 . 0 1 5 2 0 0 

0 . 0 1 7 3 7 2 

0 . 0 1 9 5 4 3 

0 . 0 2 1 7 1 5 

0 . 0 2 6 0 5 8 

0 . 0 3 0 4 0 1 

0 . 0 3 4 7 4 4 

0 . 0 3 9 0 8 6 

0 . 0 4 3 4 2 9 

0 . 0 5 2 1 1 5 

0 . 0 6 0 8 0 1 

0 . 0 6 9 4 8 7 

0 . 0 7 8 1 7 3 

0 . 0 8 6 8 5 9 

J l o g 

£ ± * 

4 3 4 

4 3 5 

4 3 4 

4 3 4 

4 3 4 

4 3 5 

4 3 4 

4 3 4 

4 3 5 

4 3 4 

9 . 9 9 7 3 9 4 

9 . 9 9 6 9 6 0 1 

9 . 9 9 6 5 2 6 1 

9 . 9 9 6 0 9 1 

l o g £ ~ J 

0 

9 . 9 9 9 5 6 6 1 

9 . 9 9 9 1 3 1 

9 . 9 9 8 6 9 ' 

9 . 9 9 8 2 6 3 

9 . 9 9 7 8 2 9 1 . 0 0 5 0 1 

9 . 9 9 5 6 5 7 

7 8 8 1 9 . 9 9 4 7 ! 

9 . 9 9 3 9 2 0 1 

9 . 9 9 3 0 5 1 

9 . 9 9 2 1 8 3 

9 . 9 9 1 3 1 4 

9 . 9 8 9 1 4 . 3 

9 . 9 8 6 9 7 1 

9 . 9 8 4 8 0 0 

9 . 9 8 2 6 2 8 1 

9 . 9 8 0 4 5 ' 

9 . 9 7 8 2 8 5 

9 . 9 7 3 9 4 2 1 

9 . 9 6 9 5 9 9 1 

9 . 9 6 5 2 . 5 6 1 

9 . 9 6 0 9 1 4 

9 . 9 5 6 5 7 1 

9 . 9 4 7 8 8 5 1 

9 . 9 3 9 

9 . 9 3 0 5 1 3 

9 . 9 2 1 8 2 7 

9 . 9 1 3 1 4 1 

£ + * 

. 0 0 1 0 0 

1 . 0 0 2 0 0 

1 . 0 0 3 0 1 

0 0 4 0 1 

0 . 9 9 9 0 0 

0 . 9 9 8 0 0 

0 . 9 9 7 0 0 

0 . 9 9 6 0 1 

1 . 0 0 6 0 2 

. 0 0 7 0 2 

. 0 0 8 0 3 

1 . 0 0 9 0 4 

1 . 0 1 0 0 5 

1 

0 . 9 9 5 0 1 

0 . 9 9 4 0 2 1 

0 . 9 9 3 0 2 1 

0 . 9 9 2 0 3 1 

0 . 9 9 1 0 4 1 

0 . 9 9 0 0 5 1 . 0 0 0 0 5 

. 0 1 2 0 7 0 . 9 8 8 0 7 1 1 . 0 0 0 0 : 

. 0 1 4 1 0 0 . 9 8 6 1 0 1 . 0 0 0 1 0 

1 . 0 1 6 1 3 0 . 9 8 4 1 3 1 . 0 0 0 1 3 

1 . 0 1 8 1 6 0 . 9 8 2 1 6 1 . 0 0 0 1 6 

1 . 0 2 0 2 0 

1 . 0 2 5 3 1 0 . 9 7 5 3 1 

1 . 0 3 0 4 6 

1 . 0 3 5 6 2 

. 0 4 0 8 1 

1 . 0 4 6 0 3 

0 . 9 7 0 4 . 

0 . 9 6 5 6 

0 . 9 6 0 7 9 

0 . 9 5 6 0 0 1 

I 
1 . 0 5 1 2 7 | 0 . 9 5 1 2 3 

. 0 6 1 8 4 

. 0 7 2 5 1 

. 0 8 3 2 9 

1 . 0 9 4 1 

0 . 9 4 1 

0 . 9 3 2 3 9 1 

0 . 9 2 3 1 

0 . 9 1 3 9 3 1 

1 . 1 0 5 1 6 0 . 9 0 4 8 4 

. 1 2 7 5 0 

. 1 5 0 2 7 

1 . 1 7 3 5 1 

1 . 1 9 7 2 1 

2 1 4 0 

0 . 8 8 6 9 : 

0 . 8 6 9 3 6 1 

0 . 8 5 2 1 4 

0 . 8 3 5 2 : 

• o s l i x 

1 

1 . 0 0 0 0 0 

1 . 0 0 0 0 0 

0 0 0 0 0 

1 .(MXX)I 

1 . 0 0 0 0 1 

0 . 0 0 1 0 0 

0 . 0 0 2 O 0 

0 . 0 0 3 0 0 

0 . 0 0 4 0 0 

0 . 0 0 5 0 0 

0 0 0 0 2 

0 0 0 0 2 

OOOO.'i 

0 0 0 0 4 

0 . 0 0 6 0 0 

0 . 0 0 7 0 0 

0 . 0 0 8 0 0 

0 . 0 0 9 0 0 

0 . 9 8 0 2 0 1 . 0 0 0 2 0 

1 . 0 0 0 3 1 

1 . 0 0 0 4 6 

1 . 0 0 0 6 2 

1 . 0 0 0 8 0 

0 0 1 0 2 

s i n h ; 

0 . 0 0 1 

0 . 0 0 2 

0 . 0 0 3 

0 . 0 0 4 

0 . 0 0 6 

0 . 0 0 7 

0 . 0 0 8 

0 . 0 0 9 

0 . 0 1 0 0 0 

0 . 0 1 2 0 0 

0 . 0 1 4 0 0 

0 . 0 I 6 O 0 

0 . 0 1 8 0 0 

0 . 0 2 0 0 0 

0 0 2 5 0 0 0 0 2 5 

0 0 3 0 0 0 0 0 3 0 

0 0 3 5 0 0 0 0 3 5 

0 041X11 0 . 0 4 0 

0 0 4 5 O 2 0 0 4 5 

1 . 0 0 1 2 5 0 . 0 5 0 0 3 

1 . 0 0 1 8 0 0 . 0 6 0 0 4 

0 0 2 4 5 0 . 0 7 0 0 6 

1 . 0 0 3 2 1 , 0 . 0 8 0 0 8 

0 0 4 0 5 0 . 0 9 0 1 1 

1 . 0 0 5 0 0 0 . 1 0 0 1 8 

1 . 0 0 7 2 1 0 . 1 2 0 2 8 

0 0 9 8 2 0 . « 4 0 4 6 

1 . 0 1 2 8 3 0 . 1 6 0 6 9 

1 . 0 1 6 2 4 0 . 1809 ' 

0 . 8 1 8 7 3 I . 0 2 0 0 6 0 . 2 0 1 3 4 

0 

0 . 0 0 5 

0 . 0 1 0 

0 . 0 1 2 

0 . 0 1 4 

0 . 0 1 6 

0 . 0 1 8 

( 1 . 0 2 0 

0 . 0 5 0 

0 . 0 6 

0 . 0 7 

0 . 0 8 

0 . 0 9 

0 12 

0 14 

0 16 

0 18 

e + o o o i _ i . 0 0 1 0 0 0 4 9 4 , £ - o ooi _ 0 9 9 9 0 0 0 4 9 . 

http://e-2.718282~2.7183
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EXPONENTIAL AND HYPERBOLIC FUNCTIONS. 

X l o g e + * l o g c~x S + z t~x c o s h X s i n h x X 

0 . 2 0 0 . 0 8 6 8 5 9 9 . 9 1 3 1 4 1 1 . 2 2 1 4 0 0 . 8 1 8 7 3 1 . 0 2 0 0 6 0 . 2 0 1 3 4 0 . 2 0 

0 . 2 5 
0 . 3 0 
0 . 3 5 
0 . 4 0 
0 . 4 5 

0 . 1 0 8 5 7 4 
0 . 1 3 0 2 8 8 
0 . 1 5 2 0 0 3 
0 . 1 7 3 7 1 8 
0 . 1 9 5 4 3 3 

9 . 8 9 1 4 2 6 
9 . 8 6 9 7 1 2 
9 . 8 4 7 9 9 7 
9 . 8 2 6 2 8 2 
9 . 8 0 4 5 6 7 

1 . 2 8 4 0 3 
1 . 3 4 9 8 6 
1 . 4 1 9 0 7 
1 . 4 9 1 8 3 
1 . 5 6 8 3 1 

0 . 7 7 8 8 0 
0 . 7 4 0 8 2 
0 . 7 0 4 6 9 
0 . 6 7 0 3 2 
0 . 6 3 7 6 3 

1 . 0 3 1 4 2 
1 . 0 4 5 3 4 
1 . 0 6 1 8 8 
1 . 0 8 1 0 8 
1 . 1 0 2 9 7 

0 . 2 5 2 6 1 
0 . 3 0 4 5 7 
0 . 3 5 7 1 9 
0 . 4 1 0 7 6 
0 . 4 6 5 3 4 

0 . 2 5 
0 . 3 0 
0 . 3 5 
0 , 4 0 
0 . 4 5 

Ü . 5 0 0 . 2 1 7 1 4 7 9 . 7 8 2 8 5 3 1 . 6 4 8 7 C 0 . 6 0 6 5 3 1 . 1 2 7 6 1 0 . 5 2 1 0 8 0 . 5 0 

0 . 6 
0 . 7 
0 . 8 
0 . 9 

0 . 2 6 0 5 7 7 
0 . 3 0 1 0 0 6 
0 . 3 4 7 4 3 6 
0 . 3 9 0 8 6 5 

9 . 7 3 9 4 2 3 
9 . 6 9 5 9 9 4 
9 . 6 5 2 5 6 4 
9 . 6 0 9 1 3 5 

1 . 8 2 2 1 2 
2 . 0 1 3 7 5 
2 . 2 2 5 5 4 
2 . 4 5 9 6 0 

0 . 5 4 8 8 1 
0 . 4 9 6 5 9 
0 . 4 4 9 3 3 
0 . 4 0 6 5 7 

1 . 1 9 5 4 6 
1 . 2 5 5 1 7 
1 . 3 3 7 4 4 
1 . 4 3 3 0 9 

0 . 6 r 6 6 6 
0 . 7 5 8 5 8 
0 . 8 8 8 1 1 
1 . 0 2 6 5 7 

0 . 6 
0 . 7 
0 . 8 
0 . 9 

1 . 0 0 . 4 3 4 2 9 4 9 . 5 6 5 7 0 6 2 . 7 1 8 2 8 0 . 3 6 7 8 8 1 . 5 4 3 0 8 1 . 1 7 5 2 0 1 . 0 

1 . 2 
1 . 4 
1 . 6 
1 . 8 

0 . 5 2 1 1 5 3 
0 . 6 0 8 0 1 2 
0 . 6 9 4 8 7 1 
0 . 7 8 1 7 3 0 

9 . 4 7 8 8 4 7 
9 . 3 9 1 9 8 8 
9 . 3 0 5 1 2 9 
9 . 2 1 8 2 7 0 

3 . 3 2 0 1 1 
4 . 0 5 5 2 0 
4 . 9 5 3 0 4 
6 . 0 4 9 6 5 

0 . 3 0 1 1 9 
0 . 2 4 6 6 0 
0 . 2 0 1 9 0 
0 . 1 6 5 3 0 

1 . 8 1 0 6 5 
2 . 1 5 0 9 0 
2 . 5 7 7 4 5 
3 . 1 0 7 4 5 

1 . 5 0 9 4 6 
1 . 9 0 4 3 0 
2 . 3 7 5 5 7 
3 . 4 4 2 1 8 

1 . 2 
1 . 4 
1 . 6 
1 . 8 

2 . 0 0 . 8 6 8 5 8 9 9 . 1 3 1 4 1 1 7 . 3 8 9 0 6 0 . 1 3 5 3 4 3 . 7 6 2 2 0 3 . 6 2 6 8 6 2 . 0 

2 . 5 
3 . 0 

3 . 5 
4 . 0 
4 . 5 

1 . 0 8 5 7 3 6 
1 . 3 0 2 8 8 3 
1 . 5 2 0 0 3 0 
1 . 7 3 7 1 7 8 
1 . 9 5 4 3 2 5 

8 . 9 1 4 2 6 4 
8 . 6 9 4 1 1 7 
8 . 4 7 9 9 7 0 
8 . 2 6 2 8 2 2 
8 . 0 4 5 6 7 5 

1 2 . 1 8 2 5 
2 0 . 0 8 5 5 
3 3 . 1 1 5 4 
5 4 . 5 9 8 3 
9 0 . 0 1 7 0 

0 . 0 8 2 0 8 5 
0 . 0 4 9 7 9 7 
0 . 0 3 0 1 9 7 
0 . 0 1 8 3 1 6 
0 . 0 1 1 1 0 9 

6 . 1 3 2 3 
1 0 . 0 6 7 7 
1 6 . 5 7 1 8 
2 7 . 3 0 8 3 
4 5 . 0 1 4 1 

6 . 0 0 0 2 
1 0 . 0 1 7 8 
1 6 . 5 4 2 6 
2 7 . 2 9 0 0 
« P . 0 0 3 0 

2 . 5 
3 . 0 
3 . 5 
4 . 0 
4 . 5 

5 . 0 5 . 0 2 . 1 7 1 4 7 2 7 . 8 2 8 5 2 8 1 4 8 . 4 1 3 0 . 0 0 6 7 3 8 7 4 . 2 1 0 7 4 . 2 0 3 

2 . 5 
3 . 0 
3 . 5 
4 . 0 
4 . 5 

5 . 0 

6 
7 
8 
9 

2 . 6 0 5 7 6 7 
3 . 0 4 0 0 6 1 
3 . 4 7 4 3 5 6 
3 . 9 0 8 6 5 0 

7 . 3 9 4 2 3 3 
6 . 9 5 9 9 3 9 
6 . 5 2 5 6 4 4 
6 . 0 9 1 3 5 0 

4 0 3 . 4 2 8 
1 0 9 6 . 6 3 
2 9 8 0 . 9 6 
S 1 0 3 . 0 8 

0 . 0 0 2 4 7 9 
0 . 0 0 0 9 1 2 
0 . 0 0 0 3 3 5 
0 . 0 0 0 1 2 3 

2 0 1 . 7 1 5 2 0 1 . 7 1 3 6 
7 
8 
9 

10 

6 
7 
8 
9 

2 . 6 0 5 7 6 7 
3 . 0 4 0 0 6 1 
3 . 4 7 4 3 5 6 
3 . 9 0 8 6 5 0 

7 . 3 9 4 2 3 3 
6 . 9 5 9 9 3 9 
6 . 5 2 5 6 4 4 
6 . 0 9 1 3 5 0 

4 0 3 . 4 2 8 
1 0 9 6 . 6 3 
2 9 8 0 . 9 6 
S 1 0 3 . 0 8 

0 . 0 0 2 4 7 9 
0 . 0 0 0 9 1 2 
0 . 0 0 0 3 3 5 
0 . 0 0 0 1 2 3 

-is + x 

f o r x> 6 

6 
7 
8 
9 

10 1 0 4 . 3 4 2 9 4 5 5 . 6 5 7 0 5 5 2 2 0 2 6 . 5 0 . 0 0 0 0 4 5 4 

6 
7 
8 
9 

10 

1 2 
14 
1 6 
1 8 

5 . 2 1 1 5 3 4 
6 . 0 8 0 1 2 3 
6 . 9 4 8 7 1 2 
7 . 8 1 7 3 0 1 

4 . 7 8 8 4 6 6 
3 . 9 1 9 8 7 7 
3 . 0 5 1 2 8 8 
2 . 1 8 2 6 9 9 

1 6 2 7 5 5 
1 2 0 2 6 1 0 
8 8 8 6 1 2 0 

6 5 6 6 0 0 0 0 

0 . 0 0 0 0 0 6 1 
0 . 0 0 0 0 0 0 8 3 
0 . 0 0 0 0 0 0 1 1 
0 . 0 0 0 0 0 0 0 2 

12 
14 
16 
1 8 

2 0 8 . 6 8 5 8 9 0 1 . 3 1 4 1 1 0 4 8 5 1 6 6 0 0 0 0 . 0 0 0 0 0 0 0 0 2 0 

TABLE II—Continued. 
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A 

Abelian integrals and functions, 305 
Absolute number, 4 

value of fractional expression, 49 
of general number, 30 

Accuracy, loss of, 281 
of approximation estimated, 200 
of calculation, 279 
of curve equation, 210 
of transmission line equations, 208 

Addition, 1 
of general number, 28 
and subtraction of trigonometric 

functions, 102 
Algebra of general number or com

plex quantity, 25 
Algebraic expression, 294 

function, 75 
Alternating current and voltage vec

tor, 41 
functions, 117, 125 
waves, 117, 125 

Alternations, 117 
Alternator short circuit current, ap

proximated, 195 
Analytical calculation of extrema, 

152 
function, 294 

Angle, see also Phase angle. 
Approximation calculation, 280 

by chain fraction, 208c 
Approximations giving (1 + s) and 

(1 - s), 201 
of infinite series, 53 
methods of, 187 

Arbitrary constants of series, 69, 79 
Area of triangle, 106 
Arrangement of numerical calcula

tions, 275 
Attack, method of, 275 

B 

Base of logarithm, 21 
Binomial series with small quanti

ties, 193 
theorem, infinite series, 59 
of trigonometric function, 104 

Biquadratic parabola, 219 

C 

Calculation, accuracy, 279 
checking of, 291 
numerical, 258 
reliability, 271 

Capacity, 65 
Chain fraction, 208 
Change of curve law, 211, 234 
Characteristics of exponential curves, 

228 
of parabolic and hyperbolic curves, 

223 
Charging current maximum of con

denser, 176 
Checking calculations, 293a 
Ciphers, number of, in calculations, 

282 
Circle defining trigonometric func

tions, 94 
Coefficients, unknown, of infinite 

series, 60 
Combination of exponential func

tions, 231 
of general numbers, 28 
of vectors, 29 

Comparison of exponential and hy
perbolic curves, 229 

Complementary angles in trigono
metric functions, 99 

Complex imaginary quantities, see 
General number. 
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Complex, quantity, 17 
algebra, 27 
see General number. 

Conjugate numbers, 31 
Constant, arbitrary of series, 69, 79 

errors, 186 
factor with parabolic and hyper

bolic curves, 223 
phenomena, 106 
terms of curve equation, 211 

of empirical curves, 234 
in exponential curves, 230 
with exponential curves, 229 
in parabolic and hyperbolic 

curves, 225 
Convergency determinations of 

potential series, 215 
of series, 57 

Convergent series, 56 
Coreless by potential series, 213 

curve evaluation, 244 
Cosecant function, 98 
Cosh function, 305 
Cosine-amplitude, 299 

components of wave, 121,125 
function, 94 
series, 82 
versed function, 98 

Cotangent function, 94 
Counting, 1 
Current change curve evaluation, 

241 
of distorted voltage wave, 169 
input of induction motor, ap

proximated, 191 
maximum of alternating trans

mission circuit, 159 
Curves, cheeking calculations, 293Ò 

empirical, 209 
law, change, 234 
rational equation, 210 
use of, 284 

D 

Data on calculations and curves, 271 
derived from curve, 285 

Decimal error, 293b 

Decimals, number of, in calculations, 
282 

in logarithmic tables, 281 
Definite integrals of trigonometric 

functions, 103 
Degrees of accuracy, 279 
Delta-amplitude, 299 
Differential equations, 64 

of electrical engineering, 65, 78, 86 
of second order, 78 

Differentiation of trigonometric 
functions, 103 

Diophantic equations, 186 
Distorted electric waves, 108 
Distortion of wave, 139 
Divergent series, 56 
Division, 6 

of general number, 42 
with small quantities, 190 

Double angles in trigonometric 
functions, 103 

peaked wave, 255, 260, 266 
periodicity of elliptic functions, 

299 
scale, 289 

E 

«, 21 
Efficiency maximum of alternator, 

162 
of impulse turbine, 154 
of induction generator, 177 
of transformer, 155, 174 

Electrical engineering, differential 
equations, 65, 78, 86 

Ellipse, length of arc, 301 
Elliptic integrals and functions, 299 
Empirical curves, 209 

evaluation, 233 
equation of curve, 210 

Engineering differential equations, 
65, 78, 86 

reports, 290 
Equilateral hyperbola, 217 
Errors, constant, 186 

numerical, 2936 
of observation, 180 
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Estimate of accuracy of approxima
tion, 200 

Evaluation of empirical curves, 233 
Even functions, 81, 98, 305 

periodic, 122 
harmonics, 117, 266 

separation, 120, 125, 134 
Evolution, 9 

of general number, 44 
of series, 70 

Exact calculation, 281 
Exciting current of transformer, 

resolution, 137 
Explicit analytic function, 294 
Exponent, 9 
Exponential curves, 227 

forms of general number, 50 
functions, 52, 297, 304 

with small quantities, 196 
series, 71 
tables, 312, 313, 314 
and trigonometric functions, rela

tion, 83 
Extrapolation on curve, limitation, 

210 
Extrema, 147 

analytic determination, 152 
graphical construction of differen

tial function, 170 
graphical determination, 147, 150, 

168 
with intermediate variables, 155 
with several variables, 163 
simplification of function, 157 

F 

Factor, constant, with parabolic 
and hyperbolic curves, 223 

Fan motor torque by potential ser
ies, 215 

Fifth harmonic, 261, 264 
Hat top wave, 255, 260, 265, 268 

zero waves, 255, 258, 261, 265 
Fourier series, see Trigonometric 

series. 
Fraction, 8 

as series, 52 
chain-, 208 

Fractional exponents, 11, 44 
expressions of general number, 49 

Full scaie, 289 
Functions, theory of, 294 

G 

Gamma function, 304 
General number, 1, 16 

algebra, 25 
engineering reports, 291 
exponential forms, 50 
reduction, 48 
reports on engineering matters, 

292 
Geometric scale of curve plotting, 

288 
Graphical determination of extrema, 

147, 150, 168 

H 

Half angles in trigonometric func
tions, 103 

Half waves, 117 
Half scale, 289 
Harmonics, even, 117 

odd, 117 
of trigonometric series, 114 
two, in wave, 255 

High harmonics in wave shape, 255, 
269 

Hunting of synchronous machines, 
257 

Hyperbola, arc of, 61 
equilateral, 217 

Hyperbolic curves, 216 
functions, 294 

curve, shape, 232 
integrals and functions, 298 
tables, 313, 314 

Hyperelliptic integrals and func
tions, 301 

Hysteresis curve of silicon steel, in
vestigation of, 248 

I 

Imaginary number, 26 
quantity, see Quadrature number. 
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Incommensurable waves, 257 
Indeterminate coefficients, method, 

71 
Indeterminate coefficients of infi

nite series, 60 
Individuals, 8 
Inductance, 65 
Infinite series, 52 

values of curves, 211 
of empirical curves, 233 

Inflection points of curves, 153 
Impedance vector, 41 
Implicit analytic function, 294 
Integral function, 295 
Integration constant of series, 69, 79 

of differential equation, 65 
by infinite series, 60 
of trigonometric functions, 103 

Intelligibility of calculations, 283 
Intercepts, defining tangent and co

tangent functions, 94 
Involution, 9 

of general numbers, 44 
Irrational numbers, 11 
Irrationality of representation by 

potential series, 213 

3 

J, 14 

L 

Least squares, method of, 179, 186 
Limitation of mathematical repre

sentation, 40 
of method of least squares, 186 
of potential series, 216 

Limiting value of infinite series, 54 
Linear number, 33 

see Positive and Negative number. 
Line calculation, 276 

equations, approximated, 204 
Logarithm of exponential curve, 229 

as infinite series, 63 
of parabolic and hyperbolic curves, 

225 
with small quantities, 197 

Logarithmation, 20 
of general numbers, 51 

Logarithmic curves, 227 
functions, 297 
paper, 233, 287 
scale, 288 
tables, number of decimals in, 281 

Loss of curve induction motor, 183 

M 

Magnetic characteristic on semi-
logarithmic paper, 288 

Magnetite arc, volt-ampere charac
teristic, 239 

characteristic, evaluation, 246 
Magnitude of effect, determination, 

280 
Maximum, see Extremum. 
Maxima, 147 
McLaurin's series with small quan

tities, 198 
Mechanism of calculating empirical 

curves, 237 
Methods of calculation, 275 

of intermediate coefficients, 71 
of least squares, 179, 186 
of attack, 275 

Minima, 147 
Minimum, see Extremum. 
Multiple frequencies of waves, 274 
Multiplicand, 39 
Multiplication, 6 

of general numbers, 39 
with small quantities, 188 
of trigonometric functions, 102 

Multiplier, 39 

N 

Negative angles in trigonometric 
functions, 98 

exponents, 11 
number, 4 

Nodes in wave shape, 256, 270 
Non-periodic curves, 212 
Nozzle efficiency, maximum, 150 
Number, general, I 
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Numerical calculations, 275 
values of trigonometric functions, 

101 

O 

Observation, errors, 180 
Octave as logarithmic scale, 288 
Odd funct'ons, 81, 98, 305 

period c, 122 
harmonics in symmetrical wave, 

117 
separation, 120, 125, 134 

Omissions in calculations, 2936 
Operator, 40 
Order of small quantity, 188 
Oscillating functions, 92 
Output, see Power. 

P 

T and ^ added and subtracted in 
trigonometric function, 100 

approximated by chain fraction, 
208c 

Pairs of high harmonics, 270 
Parabola, common, 218 
Parabolic curves, 216 
Parallelogram law of general num

bers, 28 
of vectors, 29 

Peaked wave, 255, 258, 261, 264 
Pendulum motion, 301 
Percentage change of parabolic and 

hyperbolic curves, 223 
Periodic curves, 254 

decimal fraction, 12 
phenomena, 106 

Periodicity, double, of elliptic func
tions, 299 

of trigonometric functions, 96 
Permeability maximum, 148, 170 
Phase angle of fractional expression, 

49 
of general number, 28 

Plain number, 32 
see General number. 

Plotting of curves, 212 
proper and improper, 286 

of empirical curve, 234 
Polar co-ordinates of general num

ber, 25, 27 
expression of general number, 25, 

27, 38, 43, 44, 48 
Polyphase relation, reducing trigo

nometric series, 134 
of trigonometric functions, 104 

system of points or vectors, 46 
Positive number, 4 
Potential series, 52, 212 
Power factor maximum of induction 

motor, 149 
maximum of alternating trans

mission circuit, 158 
of generator, 161 
of shunted resistance, 155 
of storage battery, 172 
of transformer, 173 
of transmission line, 165 

not vector product, 42 
of shunt motor, approximated, 189 
with small quantities, 194 

Probability calculation, 181 
Product series, 303 

of trigonometric functions, 102 
Projection, defining cosine function, 

94 
Projector, defining sine function, 94 

Q 

Quadrants, sign of trigonometric 
functions, 96 

Quadrature numbers, 13 
Quarter scale, 289 
Quaternions, 22 

R 

Radius vector of general number, 28 
Range of convergency of series, 56 
Ratio of variation, 226 
Rational equation of curve, 210 

function, 295 
Rationality of potential series, 214 
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Real number, 26 
Rectangular co-ordinates of general 

number, 25 
Reduction to absolute values, 48 
Relations of hyperbolic trigono

metric and exponential func
tions, 309 

Relativeness of small quantities, 188 
Reliability of numerical calculations, 

293 
Reports, engineering, 290 
Resistance, 65 
Resolution of vectors, 29 
Reversal by negative unit, 14 

double, at zero of wave, 258, 261 
Reverse function, 294 
Right triangle defining trigonomet

ric functions, 94 
Ripples in wave, 45 

by high harmonics, 270 
Roots of general numbers, 45 

expressed by periodic chain frac
tion, 208e 

with small quantities, 194 
of unit, 18, 19, 46 

Rotation by negative unit, 14 
by quadrature unit, 14 

S 

Saddle point, 165 
Saw-tooth wave, 246, 255, 258, 260, 

265 
Scalar, 26, 28, 30 
Scale in curve plotting, proper and 

improper, 212, 286 
full, double, half, etc., 287 

Scientific engineering records, 291 
Secant function, 98 
Second harmonic, effect of, 286 
Secondary effects, 210 

phenomena, 234 
Semi-logarithmic paper, 287 
Series, exponential, 71 

infinite, 52 
trigonometric, 106 

Seventh harmonic, 262 

Shape of curves, 212 
proper in plotting, 286 

of exponential curve, 227, 230 
of function, by curve, 284 
of hyperbolic functions, 232 
of parabolic and hyperbolic curves, 

217 
Sharp zero wave, 255, 260, 265 
Short circuit current of alternator, 

approximated, 195 
Sign error, 293c 

of trigonometric functions, 95 
Silicon steel, investigation of hystere

sis curve, 248 
Simplification by approximation, 187 
Sine-amplitude, 199 

component of wave, 121, 125 
function, 94 
series, 82 
versus function, 98 

Sine function, 305 
Slide rule accuracy, 281 
Small quantities, approximation, 187 
Special functions, 302 
Squares, least, method of, 179, 186 
Steam path of turbine, 33 
Subtraction, 1 

of general number, 28 
of trigonometric functions, 102 

Summation series, 303 
Superposition of high harmonics, 273 
Supplementary angles in trigono

metric functions, 99 
Surging of synchronous machines, 

301 
Symmetrical curve maximum, 150 

periodic function, 117 
wave, 117 

T 

Tabular form of calculation, 275 
Tangent function, 94 
Taylor's series with small quantities, 

199 
Temperature wave, 131 
Temporary use of potential series, 

216 
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Terminal conditions of problem, 69 
Terms, constant, of empirical curves, 

234 
in exponential curve, 229 
with exponential curve, 229 
in parabolic and hyperbolic 

curves, 225 
of infinite series, 53 

Theorem, binomial, infinite series, 
59 

Thermomotive force wave, 133 
Theta functions, 300 
Third harmonic, 136, 255 
Top, peaked or flat, of wave, 255 
Torque of fan motor by potential 

series, 215 
Transient current curve, evaluation, 

241 
phenomena, 106 

Transmission equations, approxi
mated, 204 

line calculation, 275 
Treble peak of wave, 262 
Triangle, defining trigonometric 

functions, 94 
trigonometric relations, 106 

Trigonometrical and exponential 
functions, relations, 83 

functions, 94, 304 
series, 82 
with small quantity, 198 

integrals and functions, 298 
series, 106 

calculation, 114, 116, 139 
Triple harmonic, separation, 136 

peaked wave, 255 
scale, 289 

Tungsten filament, volt-ampere 
characteristic, 235 

Turbine, steam path, 33 

U 

Unequal height and length of half 
waves, 268 

Univalent functions, 106 
Unsymmetric curve maximum, 151 

wave, 138 

V 

Values of trigonometric functions, 
101 

Variation, ratio of, 226 
Vector analysis, 32 

multiplication, 39 
quantity, 32 

see General number. 
representation by general number, 

29 
Velocity diagram of turbine steam 

path, 34 
functions of electric field, 304 

Versed sine and cosine functions, 
98 

Volt-ampere characteristic of mag
netite arc, 239 

of tungsten filament, 235 

Z 

Zero values of curve, 211 
of empirical curves, 233 
of waves, 255 


